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Supervisor’s Foreword

The laser has become an invaluable tool for a wide range of experiments in
physics. With the availability of ultra-stable laser sources, the use of interferom-
eters for precision measurements has become commonplace. One such use of
precision interferometry is in the field of gravitational wave detection, where
Michelson interferometers enhanced with optical resonators are used to measure
strains in space–time smaller than one part in 1022.

These state-of-the-art detectors (which are currently undergoing significant
upgrades) will be limited in a large section of their measurement band by the
fundamental properties of light and matter, such as the quantum fluctuations of the
laser beam and the thermally induced motion of the atoms in the interferometer
mirrors (the so-called mirror thermal noise). Other areas of precision measurement
have also reached thermal noise limitations, for example, the frequency stabili-
sation of lasers with compact optical resonators, especially in the context of optical
clocks or frequency standards as well as cavity optomechanical and quantum-
electrodynamic experiments.

Such high-precision laser interferometry experiments typically make use of the
fundamental Gaussian beam, so called because of its radial Gaussian intensity
profile, which creates the typical circular beam spot when projected onto a screen.
This type of beam can be generated with the high spatial stability that is important
for achieving low-noise signal readouts. However, the Gaussian beam might not be
the optimal choice for all high-precision measurements.

The impact of thermal noise on modern optical measurements depends on the
size and shape of the interrogating laser beam. Currently, all interferometers use
the simplest Gaussian beam (LG00), but it has been known since 2006 that in
theory, higher order Laguerre-Gauss modes could reduce thermal noise. However,
for a new measurement technique to become acceptable for high-precision
applications it often takes many years investigating the practical problems and to
develop the required robustness and stability.

Paul Fulda’s research brings Laguerre-Gauss modes an enormous step forward.
With its characteristic intensity pattern of four concentric bright rings, the LG33

mode has been found to be optimal for thermal noise reduction in current
experiments. Paul has developed and demonstrated simple and effective methods
to create LG33 modes using diffractive optics, before moving on to successfully
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demonstrate the compatibility of the LG33 mode with the essential building blocks
of gravitational wave detectors, namely optical cavities, Michelson interferometers
and opto-electronic sensing and control systems. Through this work, Laguerre-
Gauss modes for interferometers have been transformed from an essentially
unknown entity to a well-understood option with an experimental basis. Paul’s
work has created a strong impact in the community and this thesis has been
awarded with the prestigious thesis prize of the Gravitational Wave International
Committee (GWIC) in 2012.

Birmingham, UK, July 2012 Andreas Freise
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Preface

At the time of writing this preface, the field of gravitational wave detection is very
much focused on the installation of the second-generation upgrades to the first-
generation detectors. Enhanced LIGO is far along in the process of becoming
Advanced LIGO, and Virgo? is being upgraded to Advanced Virgo. Both these
upgrades are expected to bring a tenfold increase in broadband sensitivity, and as a
result usher in the era of the first direct gravitational wave detections. Work has
also begun digging the tunnels for the underground Japanese detector Kagra,
which aims to reach a sensitivity similar to Advanced LIGO and Advanced Virgo,
and GEO600 has been upgraded to GEO-HF with much improved high-frequency
sensitivity. It is an exciting time in the field, with a great sense of anticipation for
the challenges to come in commissioning the second-generation detectors to
design sensitivity, and also of course for the first detection itself.

When I began my Ph.D. studies 5 years ago, the gravitational wave detection
landscape was a little different, though no less exciting. The design and con-
struction of the Advanced detectors still constituted a major part of the commu-
nity’s efforts, but it was also a time of particularly rich and varied research into
new technologies that might be used to improve the sensitivity of detectors of the
second generation and beyond. During the course of my Ph.D. studies, many new
technologies were being investigated by the community at large for the gravita-
tional wave detectors of the future. To take just one example, I saw squeezed light
injection make the leap from table-top demonstrations to playing a key role in
boosting the high-frequency sensitivity of GEO-HF, as well as being implemented
on the Hanford LIGO interferometer. I was fortunate enough to spend my Ph.D.
studies investigating another such technology, although one significantly younger
even than squeezed light in the context of gravitational wave detectors: the use of
higher order Laguerre-Gauss modes as a way of reducing thermal noise.

The sensitivity of the next generation of interferometric gravitational wave
detectors will be limited in part by thermal noises of the optics. It was proposed in
2006 that using higher order Laguerre-Gauss (LG) beams in the interferometers
can reduce this noise [1]. This thesis documents the progress made in assessing the
compatibility of higher order LG beam technology with the existing precision
interferometry framework used in the gravitational wave detector community.
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Chapter 1 gives an introduction to the topic of gravitational wave detection.
This includes a brief description of the theoretical basis for gravitational waves, a
short history of gravitational wave detection experiments, a description of some of
the leading interferometric gravitational wave detectors, and the principal noise
sources that limit their sensitivity.

Chapter 2 provides an explanation of the technique of using higher order laser
modes to reduce the levels of test mass thermal noise in gravitational wave
detectors. This includes an overview of the relevant test mass thermal noise pro-
cesses, a description of Laguerre-Gauss (LG) modes and Hermite-Gauss (HG)
modes and the noise reduction factors for a range of LG and HG modes.

Chapter 3 describes the results of simulation investigations into the use of
higher order LG modes in gravitational wave interferometers. Section 1 of this
chapter describes simulation work led by Simon Chelkowski at the University of
Birmingham, using the interferometer simulation software FINESSE [2] to investi-
gate the interferometric performance of LG modes in gravitational wave detectors.
This study showed that the LG33 mode is compatible with the Pound-Drever-Hall
(PDH) longitudinal control scheme [3] and the Ward technique for alignment
control [4]. A sensitivity study was performed for the LG33 mode in an Advanced-
Virgo-like detector, with the result that the LG33 mode could offer a potential
increase in the observed gravitational wave event rate by over a factor of 2. Many
of the results shown in this section are also presented in [5].

Although I was not directly involved in this work, much of the work described
in Chap. 4 was aimed at experimentally verifying the results of these simulations.
As a result I have reproduced several of the results, and become very familiar with
the simulation code used. The code is included in Appendix B.1.

Section 2 of this chapter describes simulations investigating the means of LG
mode generation by interaction with a phase modulating surface. I wrote several
scripts and functions in Matlab to produce these results, some of which are
included in Appendix B.2. The phase profiles that I designed during this work were
used to produce higher order LG modes using a spatial light modulator, as
described in Chap. 4, and later on as the basis for designing the etched diffractive
optic used for the experiments described in Chap. 5.

Chapter 4 reports on the work that I led and carried out in table-top laboratory
investigations of LG mode interferometry. This work included the generation of
higher order LG modes using a spatial light modulator, and showed for the first
time the feedback control of an optical cavity on resonance for higher order LG
modes. An increase in the purity of LG33 modes from 51 % to over 99 % upon
transmission through a mode cleaner cavity was shown, and the decomposition of
a helical LG33 mode into two sinusoidal LG33 modes by interaction with a tri-
angular optical cavity was also experimentally demonstrated. The main results of
the work described in this chapter were published in [6].

Chapter 5 describes the work carried out towards a demonstration of LG33

mode technology at the Glasgow 10 m gravitational wave detector prototype.
Section 1 explains the crucial issue of higher order LG mode degeneracy in optical
cavities, which we aimed to investigate with the prototype experiments.
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The results of simulation work into the mode degeneracy issue in which I was
involved, but which was led by Charlotte Bond, are briefly reported in this section,
and more fully in [7].

Section 2 of this chapter describes the design of the etched diffractive optic used
for generation of LG33 modes for the prototype experiment. This diffractive optic
was also used for the high-power LG mode experiments recently carried out at the
AEI in Hanover, in which I was also involved and which are reported in [8].

These designs were made in collaboration between myself and the company
Jenoptik.

Section 3 of this chapter describes the LG33 mode generation optical path that
I designed and installed for the experiments at the 10 m prototype in Glasgow.

Section 4 reports on the methods and results of the investigation into the per-
formance of the LG33 mode in a 10 m suspended optical cavity at the Glasgow
prototype. This work was performed in collaboration between members of the
interferometry groups in the University of Birmingham and Glasgow University.
I was heavily involved from both sides, spending several weeks at the facility in
Glasgow, as well as assisting in simulation efforts from Birmingham. The work
described here is also reported in [9].

This work has provided useful insights into the compatibility of LG modes with
larger scale interferometer systems, highlighting the issue of LG mode degeneracy
within high finesse cavities. This remains the main difficulty to be overcome
before the LG mode technology can be implemented in full scale detectors,
although results presented recently in [10] suggest that there may already be a
solution to this problem on the horizon.

Chapter 6 presents a summary of the work reported in this thesis and the
conclusions that I have drawn from it. A brief discussion of the outlooks and
prospects for LG mode technology in future gravitational wave detectors is also
presented in this chapter.

Appendix A consists of reduction factors for higher order modes test-mass
thermal noises other than coating Brownian noise. The bulk of the calculations are
from references [11] and [12], but are presented here after scaling to account for
the different clipping losses associated with each mode.

Appendix B consists of the FINESSE master input file written initially by
Simon Chelkowski for producing many of the plots shown in Sect. 1 of Chap. 5, as
well as the Matlab scripts and functions written by myself and others for producing
the results shown in Sect. 2 of Chap. 5.

Gainesville, FL, USA, 30th May 2013 Paul Fulda
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Chapter 1
Introduction

1.1 Project Background

Highly sensitive laser interferometers are currently at the forefront of the scientific
field of gravitational wave detection. Despite being extremely low noise instruments,
these interferometers are yet to reach the sensitivity required to reliably make grav-
itational wave detections. Several limiting noise sources have been identified, and
much of the work in the field of gravitational wave detection goes into reducing their
effects. Thermal noise of the interferometer test masses is expected to be a limit-
ing noise source in future detectors, unless new techniques are used to reduce this
noise. Presented in this report is an investigation into a new method for reducing the
level of thermal noise in ground-based interferometric gravitational wave detectors
using higher-order Laguerre-Gauss (LG) beam shapes in place of the heretofore used
fundamental Gaussian beam [1].

There is great scientific interest in detecting gravitational waves for two main reasons.
The first of these is that the existence of gravitational waves remains an unverified
prediction of Einstein’s theory of General Relativity, and thus to prove their exis-
tence would be another confirmation of the adequacy of the theory as a model for
spacetime. The second reason is that information from astrophysical gravitational
wave sources is likely to be very valuable in the fields of astronomy and cosmology.
The development of gravitational wave astronomy in the foreseeable future would
open up a whole new spectrum for observation, and thus give astronomers and cos-
mologists another vital tool for distinguishing between competing theories on the
nature of the universe.

The nature of gravitational waves is such that they interact very weakly with matter;
an advantageous property for astronomy in that it means gravitational wave signals
from distant objects are not absorbed or scattered to the extent that electromagnetic
signals are. Gravitational waves therefore carry well preserved information about
their sources [2]. The weak nature of gravitational waves unfortunately also makes
them very difficult to detect directly. Although no conclusive direct detections of
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gravitational waves have been made, indirect evidence for their existence was dis-
covered by R. A. Hulse and J. H. Taylor in their 1975 Nobel Prize winning paper
[3]. In this paper they described the shortening orbital period of a binary neutron star
system, and concluded that the shortening of the period was due to the radiation of
energy from the system in the form of gravitational waves. The rate of decrease of the
orbital period due to gravitational radiation which was predicted by Einstein’s theory
of General Relativity was found to closely match that observed by Hulse and Taylor.
These results provide strong evidence for the existence of gravitational waves, yet
direct detections remain elusive.

A number of so called ‘first generation’ interferometric ground-based detectors have
already been built and have recorded data. To this date the sensitivity of all these
detectors has been limited to the extent that they have not conclusively detected
gravitational waves. Groups around the world are working on ways to increase the
sensitivity of gravitational wave detectors in order to make the first conclusive grav-
itational wave detection. The long term aim in the field is to build detectors that are
capable of acting as gravitational wave observatories. Such observatories could in the
future be used to greatly increase our knowledge about the structure and formation
history of the universe and the astrophysical objects which inhabit it.

1.2 Gravitational Wave Theory

This section is by no means intended as a treatise on gravitational wave theory, but
merely as a basic introduction to the concepts involved. For a more in depth descrip-
tion of gravitational wave theory, I would point the interested reader towards [4].
Gravitational waves are often described as ripples in spacetime created by accelerat-
ing masses, and are wave-like solutions to Einstein’s field equations. Their existence
solves the problem of causality that Sir Isaac Newton identified in his own theory
of gravitation; that gravitational information cannot be instantaneously transferred
across the universe, but must travel at the speed of light.

Using Einstein’s field equations from General Relativity, it is possible to predict
the amplitude, polarisation and frequency of gravitational waves emitted by a range
of astrophysical sources [5]. These include sources such as compact binary star
systems, black hole and neutron star coalescences, and supernova explosions [6, 7].
The generation mechanism of gravitational waves is quadrupole in nature. This fact,
combined with the weakness of the gravitational force, means that the amplitude of
gravitational waves is expected to be very small.

The gravitational wave amplitude, often referred to as the strain in spacetime, h, that
is observed at a distance r away from a source, is given by

h(r) = 2 G

c4

1

r

d2 I

dt2 , (1.1)
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where G is the gravitational constant, c is the speed of light in a vacuum and I is
the quadrupole moment of the source. The second time derivative of the quadrupole
moment can be thought of as an asymmetric acceleration term. From this equation
it can be seen that the amplitude of gravitational waves is likely to be small due to
the factor G

c4 . Even for large scale cosmic events such as supernovae, the predicted
amplitude of gravitational waves at the Earth is extremely small. The influence of a
gravitational wave of amplitude h on a region of spacetime is characterised by

h = δl

l
, (1.2)

where l is the proper distance between two spacetime events and δl is the change in
this distance caused by the gravitational wave. From this expression it can be seen
that for gravitational wave detectors which rely upon measuring an induced length
change δl, it is preferable to have a large separation between any test masses in the
detector so as to maximise the measurable effect.

Gravitational waves, like their electromagnetic counterparts, are expected to exist in
a whole spectrum of frequencies. The frequency of gravitational waves is determined
by the acceleration that generates them. For example, the frequency of gravitational
waves emitted by two large masses orbiting one another is simply twice the frequency
of the rotation [2]. In the case of an inspiral binary system, such as the aforemen-
tioned Hulse-Taylor binary star system, the gravitational waves radiated increase in
frequency as the period of the orbiting objects decreases. Gravitational waves are
described by a linear combination of two orthogonal polarisations; + polarisation
and × polarisation. Figure 1.1 shows how gravitational waves of both polarisations
interact with a ring of test mass particles.

Fig. 1.1 The influence of both + and × polarisation gravitational waves on ring of test mass
particles. The incident gravitational wave is travelling perpendicular to the plane of the ring of test
mass particles
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1.3 History of Gravitational Wave Detection

The history of experimental gravitational wave detection began in earnest in the late
1950s with Joseph Weber’s development of a resonant bar detector. Resonant bar
detectors are designed to work in a small frequency bandwidth by measuring reso-
nant vibrations in a metal bar caused by passing gravitational waves [8]. Although
Weber claimed to have detected a gravitational wave with his resonant bar detectors,
the result was not accepted within the scientific community due to its lack of repro-
ducibility. Subsequent designs of resonant bar detectors included the use of cryogenic
cooling systems to reduce thermally induced excitations of the resonant modes of
the bars and improve upon the sensitivity of the early detectors [9]. However, in
recent years the scientific community has been more focussed on the development
of interferometric gravitational wave detectors.

The design of interferometric gravitational wave detectors is based on the idea that
an interferometer can be used to measure the tiny changes in the separations of test
masses that are caused by the influence of a gravitational wave. The first generation
of ground-based interferometric detectors has been built and used to collect data in
the latter part of the 1990s, and the 2000s. The most well known first generation
detectors include the American LIGO detectors [10], the French-Italian detector
Virgo [11], the German-British detector GEO600 [12] and the Japanese detector
TAMA300 [13]. These detectors were designed to detect gravitational waves in a
band roughly equal to the audio frequency band; about 20 Hz to 20 kHz. However,
the first generation of interferometric gravitational wave detectors were not sensitive
enough at any frequencies to distinguish any possible gravitational wave signals
from noise sources. The designs of the first generation interferometric detectors are
described in Sect. 1.6 of this report.

Work is currently under way towards upgrading some of the first generation detectors
in a bid to increase their sensitivities by a factor of around 10 in the most sensitive
frequency region. These upgraded detectors are known as second generation detec-
tors, and will include Advanced LIGO [14], Advanced Virgo [15] and GEO-HF [16].
A new Japanese second generation detector called KAGRA is also currently under
development [17]. Much of the design of the second generation detectors is expected
to be based around techniques developed for the GEO600 detector, which was able to
achieve a high frequency sensitivity similar to LIGO despite its considerably shorter
baseline length. Some of these new techniques are described in Sect. 1.7 of this thesis.

The nature of gravitational wave detection is such that new techniques and tech-
nologies often take many years to refine and implement. This being the case, work
has already begun on the third generation interferometric detector designs. The aspi-
ration of the gravitational wave community is that by the end of the science runs
of the second generation detectors, proposals which are now only in their earliest
formative stages may be fully fledged designs for interferometric gravitational wave
detectors that are capable of operating at sensitivities some 100 times that of the first
generation detectors. The use of higher-order LG modes is one such new technology,
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and this thesis represents my work towards bringing this technology closer to a state
of readiness for implementation in future gravitational wave detectors.

1.4 Michelson Interferometer Type Gravitational Wave Detectors

There are currently a number of ground-based interferometric gravitational wave
detectors that are either actively taking data, or have done so in the past. At present
most of the currently favoured detectors use interferometric methods to detect the
changes in the separations of test masses. All of the currently operating interferomet-
ric gravitational wave detectors are based on the Michelson interferometer design
[18].

A Michelson interferometer has two main light paths. One path propagates through
each of its two so called ‘arms’. Light from a laser is made incident upon a beam-
splitter, which reflects half of the light along one arm while transmitting the rest of
the light along the other arm. Mirrors are positioned at the ends of the two arms
in order to reflect the light back to the beam-splitter. Light from both of the arms
is then recombined at the beam-splitter, causing interference in accordance with
the superposition principle. Some of the recombined light incident upon the beam-
splitter propagates back towards the laser, and some propagates towards the output
of the detector. How much light propagates in each of these directions is dependent
upon the phase difference between the beams from the two arms of the detector.

A photodetector placed at the output of a Michelson interferometer can be used to
measure the interference of the light from the two arms. The mirrors at the ends
of the arms act as the test masses in Michelson type gravitational wave detectors,
since any change in their positions causes a change in the interference at the beam-
splitter which can then be measured at the output of the detector. Michelson type
gravitational wave detectors are configured so that in the absence of any gravitational
wave signal, the interference of light from both arms of the detector is destructive in
the output port, resulting in all the light being reflected back towards the laser and
none being observed at the photodetector.

According to the theory of General Relativity, a gravitational wave will cause a
strain in the spacetime through which it passes, and in orthogonal directions these
induced strains are 180 degrees out of phase. The result of this effect for a Michelson
interferometer is that one arm increases in length while the other arm decreases
in length, as depicted in Fig. 1.2. The differential length change of the two arms
of a Michelson type gravitational wave detector which is caused by an incident
gravitational wave results in a change of phase of the beams in both arms. The
relative phase change between both arms, δφ, which is caused by a change in arm
length δl is given by

δφ = 4π

λ
δl, (1.3)
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Fig. 1.2 The influence of both + and × polarisation gravitational waves on a Michelson interferom-
eter. The incident gravitational wave is travelling perpendicular to the plane of the interferometer
arms. Note the insensitivity of the interferometer to the × polarised gravitational wave. Image
courtesy of S. Chelkowski

where λ is the wavelength of light in the interferometer. The relative phase change
caused by a gravitational wave will cause a change in the interference at the beam-
splitter, which will be observed as a change in the light intensity detected by the
photodetector at the output port. It must be noted however that the strength of this
effect is dependent upon the orientation of the polarisation vector of the gravita-
tional wave relative to the arms, as well as the orientation of the gravitational wave
propagation vector relative to the arms.

The change in spatial separation δl of two test masses caused by a gravitational wave
is proportional to the proper distance between them, l. Thus it can be seen that for
an interferometric detector which attempts to measure a δl caused by a gravitational
wave, a large initial spatial separation of test masses (base-line) is advantageous. This
is the reason why all of the first generation ground-based interferometric gravitational
wave detectors utilise such large base-lines, in two cases 4 km in length.

1.5 Noise Sources in Interferometric Gravitational Wave
Detectors

The reason that gravitational waves have not been reliably detected thus far is because
of the difficulty associated with isolating detectors from noise sources. The expected
strains induced at the Earth by gravitational waves from even the largest astrophysical
sources are so small that detectors must be able to limit the strain equivalent noise
in the observation band to 10−22 or lower in order to reliably detect them. There
are many noise sources which have to be considered in the design of ground-based
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interferometric gravitational wave detectors. A brief description of some of these is
provided in this section.

1.5.1 Seismic Noise

Seismic noise originates from the vibrations that are ever present across the surface
of the Earth. Disturbances in the ground position at the detector site can couple to
the positions of the test masses, thus generating noise in the detector output. In order
to minimise this coupling, the test masses are isolated from the ground motions by
means of multi-stage pendulum suspensions such as described in [19]. For the first
generation of gravitational wave detectors, mechanically coupled seismic noise was
the dominant noise contribution at frequencies below about 10 Hz. Seismic motion
can also couple to noise in the interferometer gravitationally, an effect known as
Newtonian noise, or gravity gradient noise [20]. Though this coupling is typically
much weaker than the mechanical coupling, there is no known effective way to isolate
the test masses from it, so it is expected to become a more pressing concern in the
design of future detectors.

1.5.2 Shot Noise

Shot noise originates from the quantum nature of light. It can be interpreted in many
different ways, but most commonly it is understood as a photon counting noise.
The total amount of energy transferred to a photodetector from an incident laser
beam within a given time is dependent upon the number of discrete photons that
hit it during that time. There is a statistical fluctuation in the number of photons
from a laser beam that will hit a photodetector in a given time, characterised by a
Poissonian distribution. This statistical fluctuation is what produces the shot noise.
The shot noise is proportional to

√
P , where P is the light power present in the

arms of the interferometer. The signal intensity in laser interferometers, however, is
proportional to P , and thus it can be seen that the signal to shot noise ratio can be
improved by increasing the light power in the arms of the interferometer [21].

1.5.3 Radiation Pressure Noise

A well known outcome of the quantum nature of light is that photons carry momen-
tum. When a photon is reflected from a mirror surface, this momentum is imparted to
the mirror. The combined effect of many photons interacting with a mirror surface is
known as the radiation pressure on the mirror. Due to the same statistical fluctuation
in the number of photons interacting with a mirror as described for shot noise, this
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pressure also fluctuates statistically, thus leading to a fluctuation in the position of
the mirror. This is currently not a limiting factor for the sensitivity of gravitational
wave detectors. However, the level of radiation pressure noise increases with the
intensity of light within the arms of an interferometer. Therefore in future detectors,
which are expected to have circulating light powers some orders of magnitude larger
than current detectors in order to reduce the effects of shot noise, radiation pressure
noise may become a limiting noise source [22]. Research is currently under way into
possible ways in which the effects of radiation pressure can be used to amplify the
signals created by a small bandwidth of gravitational waves within an interferometer.
The use of so called ‘optical springs’ may even be incorporated into future detectors
to increase their sensitivity within a certain bandwidth [23].

1.5.4 Thermal Noise

Thermal noise in interferometric gravitational wave detectors can be broadly sepa-
rated into two categories; test mass thermal noise and suspension thermal noise. The
dominant component of test mass thermal noise arises due to the Brownian motions
of the molecules which make up the test masses and their reflective coatings. These
vibrations create an uncertainty in the position of the reflecting surfaces of the mir-
rors, and thus create a changing output signal from the detector which can obscure
any gravitational wave signals. It is the reduction of test mass thermal noises in
detectors that is the goal of this work; consequently a significant portion of Chap. 2
is devoted to discussing this noise source in greater detail.

As previously mentioned, the core optics of all the leading gravitational wave inter-
ferometers are suspended in a manner such as to reduce the coupling of ground
vibrations to the optics. The Advanced LIGO suspensions, for example, consist of
multi-stage pendulums hung from blade-springs [24]. The pendulum reduces the
coupling of horizontal ground vibrations to the optics, and the springs reduce cou-
pling of vertical ground vibrations to the optics. Suspension thermal noise arises from
the Brownian motion of the atoms within the suspension wires exciting the resonant
modes of the suspension. At around 1 Hz, the frequencies of these resonant modes are
typically below the detector observation band. However, if the suspension is lossy,
some of the energy in the resonant modes dissipates and causes displacements at
higher frequencies within the observation band.

The best way to reduce the effect of suspension thermal noise is to implement a
suspension system with a very low mechanical dissipation (i.e. a very high Q-factor)
as such a suspension confines the vibrations to a very narrow band near the resonant
frequencies. The final stage of the Advanced LIGO test mass suspensions are made
from monolithic fused-silica, due primarily to its high Q-factor. Losses in the sus-
pension material are inevitable however, and these set the suspension thermal noise
lower limit.

http://dx.doi.org/10.1007/978-3-319-01375-6_2
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1.5.5 Technical Noises

In this context, technical noises include all non fundamental sources of noise in
detectors, which in principle could be eliminated. Some main technical noise sources
include laser amplitude and frequency noise, beam pointing or ‘jitter’ noise, and
residual gas pressure noise. Fluctuations of the laser amplitude can couple to noise,
as these fluctuations may be detected at the output of the interferometer. The coupling
of these fluctuations to the detector output is drastically reduced by operating the
interferometers at a ‘dark fringe’ working point, where in the absence of any signal
the interferometer output is null. In an interferometer with exactly matched arms,
fluctuations in the laser frequency do not couple to the detector output. However,
in reality small differences between the two arms inevitably exist, and so the laser
frequency must be stabilised by means of a feedback loop using a high-finesse optical
cavity as a reference [25].

Beam jitter noise arises from a coupling of fluctuating beam alignment to power in the
detector output. If the beams from the two arms do not spatially overlap perfectly at
the beam splitter, the superposition will be incomplete and the interferometer output
will no longer be null. The most common way to reduce the beam jitter to acceptable
levels is by passing the beam through one or more mode cleaner cavities, which filter
out the higher-order modes which are equivalent to misalignments [26].

Residual gas pressure noise arises from the difference in refractive indices of volumes
of different gas pressure within the arms of an interferometer. The phase of light in
the arms of an interferometer is dependent upon the refractive index of the medium
which fills the arms. Therefore if the medium in one arm is of a higher refractive
index than the medium in another arm, the interference at the beam-splitter will be
affected. This very effect is used to measure refractive indices of materials in Michel-
son interferometers. In an interferometric gravitational wave detector however, any
changes in these refractive indices will be observed at the output as noise. In order
to reduce the effect of residual gas pressure noise, the arms of all interferometric
gravitational wave detectors are kept in a state of high vacuum.

1.6 First Generation Ground-Based Gravitational Wave
Detectors

In the 1990s and the 2000s a number of large-scale interferometric gravitational wave
detectors were built; these are classed as members of the ‘first generation’ of interfer-
ometric gravitational wave detectors. Figure 1.3 shows the optical topology of a basic
Michelson interferometer, along with the topologies of some of these first generation
detectors. These detectors were designed to reach broadband strain sensitivities on
the order of 10−22

√
Hz, and they achieved this goal in the late 2000s. Even with

such unprecedented levels of sensitivity, the rate of detectable events was expected
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Fig. 1.3 Three different optical layouts for Michelson type gravitational wave detectors. Layout 1
is the basic Michelson topology. Layout 2 includes a power recycling mirror and Fabry-Perot arm
cavities, and is similar to the topologies of the LIGO, Virgo and TAMA300 detectors. Layout 3
includes a power recycling mirror, a signal recycling mirror and delay lines. This is similar to the
topology of the GEO600 detector. Image used courtesy of S. Chelkowski

to be low—on the order of 0.2 events per year for the most optimistic prediction for
the most common sources [27]. Despite the lack of a detection, the work that went
into designing and building these detectors has pushed back the boundaries of what
is achievable with interferometers. In building the detectors a wealth of knowledge
has been built up about the noise sources present in interferometric detectors and
the ways in which they can be reduced. Pioneering work on the GEO600 detector in
particular has led to the development of many new techniques which are likely to be
used in the second-generation detectors which are approaching the commissioning
stage.

The GEO600 detector, situated in Ruthe, Germany is a 600 m arm length interfer-
ometer built as the result of a collaboration between interferometry groups from
Glasgow in Scotland, and Hannover in Germany [28]. This detector has served as a
test-bed for a range of advanced interferometric techniques, such as dual recycling
[29], the DC readout method [30], and squeezed light injection [31]. Dual recycling
is a combination of two techniques; power recycling and signal recycling. Power
recycling is a method whereby a mirror placed between the laser source and the
beam-splitter is used to create an enhanced light power within the detector. The
power recycling technique is feasible in gravitational wave detectors because the
interferometer is kept on a dark fringe in the absence of gravitational wave signals.
As a result, little light escapes from the output in the absence of a signal, instead
being reflected towards the input. By placing a mirror at the interferometer output
it is possible to keep the light circulating in the interferometer, thus enabling very
high light powers to be reached in the arms and improving the signal to shot noise
ratio. Signal recycling may be considered a second generation technique, and so is
described briefly in Sect. 1.7. GEO600 also makes use of so-called delay lines in the
arms to increase the effective arm length.

The LIGO, Virgo and TAMA detectors are all very similar in the principle of their
design. They are essentially large scale Michelson interferometers, with the addition
of the aforementioned power recycling mirror, and Fabry-Perot arm cavities. The
arm cavities increase the effective length of the arms in a similar manner to delay
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lines; light circulates many times within the cavities before recombining at the beam-
splitter. The American LIGO detector consists of three interferometers; two based
in Hanford, Washington, and one based in Livingston, Louisiana [10]. Two of these
interferometers have arm lengths of 4 km, and the other has arms of length 2 km. The
Virgo detector situated near Pisa in Italy is the result of a French-Italian collaboration
and has arms of length 3 km [11]. The Japanese TAMA300 detector has arms of length
300 m, and is situated near Tokyo [13].

1.7 Second Generation Ground-Based Detectors

The first generation detectors have recently completed their period of scientific data
recording. Work has now begun on upgrading them to second generation detectors,
which are expected to reach sensitivities around 10 times greater than their previous
incarnations. This increase in sensitivity will have a strong impact on the expected
rates of observable events, due to the cubic dependence of the searchable volume
of space on the sensitivity. The optimistic event rate for the most common source,
neutron star—neutron star binary inspiral systems, increases from 0.2 events per year
to 400 events per year with the increase in sensitivity from the first generation of
detectors to the second generation [27].

An upgrade of two of the LIGO detectors is nearly complete; the upgraded detector
will be known as Advanced LIGO, or aLIGO. The updates will include the imple-
mentation of the signal recycling technique as well as advanced suspensions for the
optics and a new laser with higher power [14]. The go-ahead was also recently given
to move one of the aLIGO interferometers to India, where the geographical separa-
tion will improve the sky localisation abilities of the detector network, as described
for the slightly different case of moving one interferometer to Australia in Ref. [32].
The Virgo detector will undergo similar changes to its layout and will be known in
the future as Advanced Virgo [15]. The Japanese gravitational wave detection com-
munity is currently working on a new detector called KAGRA. This detector will
use cryogenic methods to cool the optical components of the interferometer to very
low temperatures in a bid to reduce the effects of thermal noise [17]. Some of the
second generation techniques, along with the benefits they offer, are described here.

1.7.1 Signal Recycling

Signal recycling is a technique whereby the signal sidebands of the electromagnetic
field, which are created when a gravitational wave passes through the detector, are
recycled back into the arms of the interferometer by means of a mirror placed at
the output [33]. The light can then interact many times with gravitational waves
propagating through the detector, and for a small frequency band this effect will
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be resonant, resulting in amplification of the gravitational wave signal. A tunable
signal recycling technique may be a viable option for second generation detectors,
whereby the frequency of optimum sensitivity can be adjusted in order to search for
gravitational waves at different frequencies.

1.7.2 Schemes to Increase Circulating Light Power

The power recycling technique has already led to an improvement in the level of
light power which can be obtained within interferometers. Further research into new
laser technology has also lead to the development of lasers with higher output powers,
helping to further reduce the effects of shot noise in interferometric gravitational wave
detectors [34]. As the light power in detectors gets higher, the effects of radiation
pressure and thermal lensing become increasingly serious problems. It is conceivable
that a maximum feasible light power will be reached, until the effects of radiation
pressure and thermal lensing are reduced.

1.8 Future Gravitational Wave Detectors

1.8.1 Third Generation Ground-Based Detectors

There are a number of interferometry techniques which are so new that they are
not being considered for inclusion in the majority of second generation gravitational
wave detectors. These techniques are described as third generation techniques, and
it is expected that their implementation in future detectors will enable them to reach
sensitivities roughly 100 times those of current detectors. One example of such a
technique is the use of ‘squeezed light’ interferometers [35]. The use of cryogeni-
cally cooled optical components in order to reduce the effects of thermal noise may
be a common feature of third generation detectors. These techniques may include
the use of so called ‘quantum non-demolition’ interferometry to surpass the standard
quantum limit on interferometer sensitivity [36]. Higher-order LG mode interfer-
ometry, the technique with which this project is chiefly concerned, may also feature
among the new technologies present in third generation gravitational wave detectors.

1.9 Structure of this Thesis

The goal of this thesis is to present a motivation for my studies on higher-order LG
mode interferometry in the context of improving the sensitivity of future gravitational
wave detectors, and then to describe the work carried out during my PhD. The aim is
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also to provide the necessary background to understand the work described, as well
as its implications for future research on this topic.

In this thesis I will focus first on the thermal noise of the test masses in ground-
based interferometric gravitational wave detectors, and then discuss the potential of
higher-order modes to reduce the effects of this noise in Chap. 2. Next I will discuss
some initial theoretical and numerical investigations into the generation of higher-
order LG modes, as well as their interferometric performance in Chap. 3. In Chap. 4
I will describe the table-top experiments I performed at Birmingham to investigate
the generation of higher-order LG modes with a spatial light modulator, and their
interactions with optical resonators. I will then discuss the issue of higher-order LG
mode degeneracy in high-finesse optical cavities, and describe my work carried out
in collaboration with the interferometry group at the University of Glasgow on the
10 m prototype detector facility with the goal of assessing the impact of the mode
degeneracy issue on the feasibility of using LG modes in future detectors in Chap. 5.
Finally, a summary of the work and the conclusions drawn from it, as well as the
outlook and future prospects of the topic will be presented in Chap. 6.
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Chapter 2
Laguerre-Gauss Beams for Test Mass
Thermal Noise Reduction

Test mass thermal noise was not a dominant noise source in the first generation
of gravitational wave detectors. However, with the upgrade to second generation
detectors, a factor of 10 increase in sensitivity in the whole frequency band is aimed
for, and at such improved sensitivities thermal noise is expected to be one of the major
limiting noise sources. The Brownian thermal noise in particular is expected to be of
sufficient magnitude to obscure gravitational wave signals around the 100 Hz region
in the advanced detectors, unless new techniques are employed to reduce the effect.
This point is illustrated in the projected sensitivity of the Advanced LIGO detector,
shown in Fig. 2.1. From the second generation onwards therefore, advancements in
other areas of the interferometers, such as the implementation of higher laser powers,
will make a limited impact in the 100 Hz region unless the thermal noise of the test
masses can be reduced. Research into methods for reducing the effects of this noise
source is therefore of paramount importance to the gravitational wave community.

2.1 Test Mass Thermal Noise

The total thermal noise of the test masses is commonly considered as a sum of
four different sources of thermal noise in the phase of light reflected from the test
mass. First of all, contributions from the coating and the substrate are dealt with
separately, as a result of different approximations being appropriate for each of these
two components of the test mass. For each of the coating and the substrate, the total
thermal noise is considered as an incoherent sum of Brownian noise and themo-optic
noise contributions.1

A rigorous description and analysis of Brownian noise, and thermoelastic and ther-
morefractive noises (the two components of thermo-optic noise), as well as thermal

1 Previously, the thermo-optic noise had been considered as an incoherent sum of thermoelastic
noise and thermorefractive noise. This view has been revised however, in light of the fact that
thermoelastic and thermorefractive effects are not necessarily incoherent processes [11].
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Fig. 2.1 The Advanced LIGO noise budget, in tuned signal recycling configuration for optimal
broadband sensitivity (upper plot) and detuned signal recycling configuration for optimal sensitivity
to binary neutron star sources (lower). The contributions of the individual noise sources are shown
by the coloured lines. The quantum noise shown is the sum of shot noise and radiation pressure
noise, as described in Sect. 1.5

deformation of substrates in the context of higher-order LG beams in gravitational
wave detectors can be found in [31]. For a coherent treatment of thermo-optic noise
for the LG00 mode see [11]. As yet a coherent analysis of thermo-optic noise for
higher-order LG modes is not available.

http://dx.doi.org/10.1007/978-3-319-01375-6_1
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2.1.1 Brownian Thermal Noise

This noise source arises due to excitations of the elastic modes of mirrors and their
coatings caused by Brownian motion of their constituent atoms. These excitations
lead to an uncertainty in the position of the reflecting surface. The fluctuation in the
phase of the reflected light that results is indistinguishable from a phase change in
the light that would be caused by gravitational waves, and thus appears as noise at
the detector output. As with the suspensions, the effect of the thermal excitations can
be minimised by using materials with very high Q-factors. Using high Q materials
confines the fluctuations due to each resonant mode of the mirror or coating to a very
narrow band around the resonance frequency. Since the resonant frequencies of the
modes of oscillation lie above the observation band of the detector (>6 kHz) [24], the
amplitude of oscillations within the observation band are significantly suppressed.

Brownian noise of the test mass substrates was initially calculated by summing
the contributions from many normal-modes of the substrate until convergence was
reached [15]. Levin showed in [24], however, that a more computationally efficient
solution could be found by implementing the fluctuation dissipation theorem (FDT)
[7]. Levin also showed that the FDT method calculated contributions from surface
losses more accurately than the normal-mode decomposition method, which relies on
the assumption of homogeneously distributed sources of friction within the material.
It should be kept in mind when using the results of the FDT treatment of Levin
that they also have assumptions inherent; in particular, the assumption that one is
only interested in calculating the thermal noise at frequencies well below the lowest
eigenfrequency of the system. While this may be a valid assumption for current
designs, this should be re-evaluated for different test masses in the future, which if
larger than current test masses may have resonant frequencies closer to the detection
band.

Using the method described in [24], the spectral density of Brownian thermal noise
is given by

Sx ( f ) = 4kB T

π f
φ U, (2.1)

where T is the temperature of the relevant material, φ is known as the ‘loss angle’ and
represents the retardation effect associated with dissipation in the material, and U is
the strain energy at static pressure normalised for 1 N [24]. The factor U has some
dependence on the material properties, but interestingly also depends on the intensity
distribution of the readout beam. This is where the advantage of higher-order LG
beams manifests itself, as shall be discussed in more detail later on in this chapter.

For the Brownian noise in the substrate, in the case of an infinite sized mirror where
the beam radius is considered much less than the mirror radius,

U = 1 − σ2

2
√

πYw
, (2.2)
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where σ is the Poisson ratio of the material, Y is the Young’s modulus of the material,
and w is the 1/e2 radius of the fundamental Gaussian mode readout beam [5]. For the
Brownian noise in the coating, under the same infinite mirror approximation, Vinet
showed that

U = δC
(1 + σ)(1 − 2σ)

πYw2 �1, (2.3)

where δC is the coating thickness, and �1 is a factor which includes higher order cor-
rections due to differences between the coating material parameters and the substrate
parameters [31]. It should be noted that the coating Brownian noise level, which in
the second generation detectors is expected to be the leading test mass thermal noise
contribution, scales with the inverse square of the readout beam size. The substrate
Brownian noise level, on the other hand, scales inversely with the beam size. This
dependence of the thermal noise level on beam size was the driving factor for the
Advanced LIGO design to use significantly larger beam sizes on the test masses than
in initial LIGO [18].

2.1.2 Thermo-Optic Noise

Thermo-optic noise arises from the fluctuating temperature field within a material.
The changes in temperature couple to the phase of light reflected from the test mass
in two ways; via the thermal expansion of the test mass, and the change in refractive
index of the coating. Previously, these two couplings of temperature fluctuations to
readout beam phase have been referred to as thermoelastic noise and thermorefractive
noise respectively, as discussed in for example [25] and [6].

Thermoelastic noise is caused when the thermodynamic fluctuations cause strain
fluctuations within the material as the hotter volumes expand and the colder volumes
contract. These strain fluctuations then cause an additional excitation of the elastic
modes of the materials, leading to uncertainties in the surface position as in the case
of Brownian thermal noise. The spectral density for thermoelastic noise in the low
frequency limit is given by

Sx ( f ) = kB T

π2 f 2 W (2.4)

where the variables are as previously defined for Brownian noise except for W ,
which is the average energy dissipated by the coupling of the temperature field to
strain in the material [31]. This is effectively equivalent to Eq. 2.1, expect this time
we consider W as the energy dissipated through coupling between the strain and
the temperature field in the material. The thermal expansion coefficient α effectively
determines the coupling of temperature fluctuations to strain fluctuations, and appears
later in calculations of the W factor. In fused silica, α is relatively small at room
temperature, and so the predicted thermoelastic noise level in gravitational wave
interferometers is orders of magnitude lower than the Brownian thermal noise level.
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This may not always be the case however. Sapphire has been proposed as another
candidate substrate material, largely due to its good Brownian noise performance.
However, the thermal expansion coefficient of sapphire is significantly higher than
that of fused silica and so thermoelastic noise may be the limiting thermal noise if
sapphire test masses are used in the future [28]. The choice of new substrate materials
for reducing thermal noise is further discussed in Sect. 2.2.

Thermorefractive noise is similar to thermoelastic noise in that it arises from the
temperature fluctuations within the material, but the coupling to phase noise is in
this case via the ∂n

∂T coefficient; the rate of change of refractive index with tem-
perature [11]. The level of thermorefractive noise is also expected to be orders of
magnitude lower than the Brownian noise contribution for the currently used test
masses, although as with thermoelastic noise, this may change in the future. Prelim-
inary investigations have shown a very low ∂n

∂T coefficient for silicon at cryogenic
temperatures. As is discussed in the next section, this may be an important factor in
the choice of materials for the mirror substrates in future detectors.

Since these two noise sources share the same origin, however, the simple treatment
of them as incoherent is not necessarily adequate. In [11], Evans demonstrates a
rigorous coherent treatment of thermoelastic and thermorefractive noise, and shows
that the incoherent treatment leads to an overestimation of the thermo-optic noise at
100 Hz in Advanced LIGO of around a factor of 4.

The power spectrum of the thermal fluctuations that give rise to the thermo-optic
noise is given by

ST O = 2

π
3
2

kB T 2

w2
√

κC f
, (2.5)

where w is the beam spot size, κ is the thermal conductivity of the material, and C is
the heat capacity per unit volume of the material. Estimates for the coating thermo-
optic noise level in a LIGO using this treatment put it at around a factor of 8 below
the coating Brownian noise level, as shown in Fig. 2.1. As a result, Evans states that
this noise source should not considered a driving force in the design of aLIGO [11].
However, this result should be re-evaluated for designs of future detectors, which
may use different materials and may operate in different temperature regimes, both
of which may give rise to different α and ∂n

∂T coefficients, as well as a different
coherence level between the two dissipation processes.

2.2 Thermal Noise Reduction Techniques

2.2.1 Cryogenic Interferometry

Perhaps the most obvious technique that can be employed to reduce the level of
thermal noise in gravitational wave detectors is to cool the optics and final stage
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suspensions to cryogenic temperatures. The noise spectral density of most of the
aforementioned thermal noises reduces with temperature in most cases, although
there is the possibility for exceptions to this rule caused by the variation in α and ∂n

∂T
with temperature.

There are unfortunately some difficulties associated with implementing cryogenic
test-masses in large scale interferometers. Firstly, the test-masses are deliberately
well isolated, and thus extracting heat from them is difficult. The current suspen-
sions have a high thermal resistance due to their small cross sectional area, large
length, and low thermal conductivity. Also, large low temperature baffles known as
cryo-shields are required to avoid the heating up of the mirrors due to absorption
of thermal radiation from the room temperature beam tubes. Cryogenic interferom-
etry has been demonstrated nonetheless, at the Japanese interferometer CLIO [32].
A new Japanese cryogenic interferometer, KAGRA, has been funded and will begin
construction very soon. This detector will serve well to elucidate the subject of cryo-
genic interferometry for the gravitational wave community, as well as serving as a
highly sensitive detector in its own right [29].

2.2.2 New Coating Methods and Materials

The levels of all thermal noises in mirror coatings depend on the mechanical loss
mechanisms of the materials from which they are made. The Q-factor of the material is
of primary importance for determining how excitations caused by either the Brownian
or the thermoelastic noise mechanisms translate into noise in the detector. Materials
with high Q-factors confine the movement of the mirrors caused by these noise
mechanisms to narrow frequency bands, and therefore mitigate the effect on the
sensitivity. The level of thermo-optic noise is also determined by the α and ∂n

∂T
coefficients, so these should be considered when choosing new materials.

Fused silica performs well enough at room temperature in all respects for the first gen-
eration of gravitational wave detectors not to be limited by thermal noise. However,
the more exacting requirements of the next generation of detectors have triggered
a search for better coating methods and materials, as described in for example [27]
and [19]. The possibility of employing cryogenic interferometry must also be con-
sidered, as the α and ∂n

∂T coefficients as well as the Q-factor can vary significantly
over the temperature range from a few to 300 K, in addition to the obvious gains from
reducing T . Silicon has shown considerable promise as a possibly well performing
substrate and coating material at low temperatures, to the extent that it is strongly
considered for inclusion in the third-generation Einstein Telescope design [21].

In addition to the search for new materials, new methods of making high-reflective
coatings are also being investigated. The ‘waveguide coating’ technique developed
in collaboration between Jena and Hannover has shown promising results so far
[14], and crystalline ‘epitaxial coatings’ are also a strong consideration in a potential
Advanced LIGO upgrade [2].
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2.2.3 All-Reflective Interferometers

One way to avoid the thermal problems that result from using very high laser powers
is to reduce the number of transmissive optical elements that the main laser travels
through. By employing diffractive grating cavities instead of the currently used trans-
missive ones, all reflective interferometer configurations can be designed [10]. There
are two advantages of using all reflective configurations; firstly since the optics are
no longer required to be transmissive, a greater selection of materials with potentially
better thermal noise characteristics become viable options for substrates. Secondly
in all reflective configurations less beam power will be absorbed by the optics, thus
making cryogenic operation easier to achieve and reducing the impact of all thermal
problems. This technology has encountered some difficulties due to the introduction
of additional phase noise due to translation of the gratings [17], but on the positive
side investigations into this effect were partially responsible for the development of
the waveguide coating technology [14].

2.2.4 Compound End Mirrors: ‘Khalili Cavities’

Another idea for reducing the effects of coating thermal noise is to employ compound
mirrors in place of the end test masses [22]. The idea is based on the fact that the level
of coating Brownian noise scales with the number of coating layers used to make
the reflective surface of the test mass. In typical gravitational wave interferometers,
most of the coating layers are on the end test mass surfaces, as these are required
to have the highest reflectivity. By replacing the single end mirror with a compound
mirror made up of two mirrors controlled to a state which is anti-resonant for the
carrier light, a high reflectivity can potentially be achieved with significantly fewer
coating layers on the first of the two mirrors. Although there will be many coating
layers on the second mirror, a relatively small proportion of the light intensity will
actually probe this mirror surface, and so the coupling to the detector output is small.
This technology is still in early stages of development, but there are plans to test
it at the Hannover 10 m prototype facility [16]. The main difficulties in employing
this technique are expected to arise from the lack of geometric stability in the short
cavity, and the associated problems in controlling the extra degrees of freedom that
are introduced.

2.2.5 Flat Readout Beams

Spreading the readout beam power over a larger portion of the mirror surface area can
reduce the thermal lensing effect and all of the substrate and coating thermal noises.
This requires the introduction of so-called flat readout beams, such as higher-order
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LG beams. As this technology was the main focus of the work comprising this thesis,
the thermal noise advantages it may bring are described in more detail in later on in
this chapter in Sect. 2.6.

2.3 The Mode Picture for Laser Beams

Throughout this thesis I will be discussing the properties of different spatial laser
modes, so it is fitting to give an introduction to the concept of these modes. In this
section I will first describe what is meant by the term spatial laser modes, and then
describe two of the mode sets commonly used to describe the transverse properties
of laser beams; the Hermite-Gauss (HG) modes and the LG modes.

The mode picture of laser beams is intimately related to the properties of light within
optical resonators. In lasers, an optical resonator, or cavity, is almost always used
to predefine the geometric properties and the frequency of the generated laser light.
Light produced from the laser transitions in the lasing material circulates in an optical
resonator, and the output beam is transmitted through a semi-transparent mirror. For
the purposes of this discussion, however, we will consider a two mirror optical
cavity, as shown in Fig. 2.2 with light incident on one mirror. In a similar manner to
other resonators, an optical resonator has the potential to produce any of an infinite
number of resonant modes. The mode of operation of a laser is defined by both the
frequency of the light and the geometric properties of the beam. In the context of
optical resonators, these two properties are known as the longitudinal and transverse
mode orders respectively.

For the longitudinal mode order of an optical resonator, it is instructive to consider the
response of an ideal optical resonator in the plane wave approximation, i.e. without
considering the transverse properties of the light. The circulating power within an
optical resonator for an input power of 1 W is given by

Pcirc = T1

1 + R1 R2 − 2r1r2 cos(2kL)
, (2.6)

Fig. 2.2 A cartoon picture of an optical cavity. Light enters the cavity through the input mirror
from the left, and resonates inside the cavity if its length is divisible by an integer number of half
wavelengths. The maroon sinusoid represents the longitudinal mode properties, and the red shaded
area represents the transverse mode properties
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where T1 is the power transmissivity of the input mirror, R1 and R2 are the power
reflectivities of the input and output mirrors respectively, L is the cavity length, and
k = 2/πλ is the wavenumber of the light [12]. It can be seen that there is an infinite
set of discrete light frequencies that give a maximal circulating light power for a
given cavity length, wherever 2kL = nπ (n = 1,2,3...). This can be easily understood
if we consider each resonance as a case fulfilling the criterion that an integer number
of half wavelengths matches the cavity length exactly, creating a resonant standing
wave inside the cavity.

The transverse mode of an optical resonator describes the geometry of the beam
cross section, in a plane perpendicular to the propagation vector. An infinite set
of transverse modes of an optical resonator with spherically curved mirrors can be
found by solving the paraxial wave equation with the boundary conditions given by
the cavity parameters, namely the cavity length and the curvatures of the mirrors.
The paraxial wave equation is simply the wave equation for the electric field with
the additional approximation that the light field is beam-like, i.e. varying much more
rapidly along the transverse axes than the propagation axis. We can describe an
electric field to be a product of a function describing the spatial properties and the
oscillating function in the propagation direction z as

E(x, y, z) = u(x, y, z) exp(−ikz). (2.7)

If we substitute this into the wave equation for the electric field we get

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 − 2ik
∂u

∂z
= 0. (2.8)

The condition on the variation in beam shape being slower in z than in x and y is
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leading us to the paraxial form of the wave equation if we neglect the much smaller
second derivative in z:

∂2u

∂x2 + ∂2u

∂y2 − 2ik
∂u

∂z
= 0. (2.10)

There exist many solutions to Eq. 2.10, each representing a transverse mode of the
electric field. The lowest order solution is the commonly observed Gaussian beam,
with transverse field distribution given by

u(x, y, z) =
√

2

π

1

w(z)
exp(i�(z)) exp

(

−ik
x2 + y2

2RC (z)
− x2 + y2

w2(z)

)

, (2.11)
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where w(z) is known as the Gaussian spot size parameter,2 �(z) is the Gouy phase
(which is discussed in more detail in Sect. 4.3), and RC (z) is the radius of curvature
of the spherical phase front.

There also exist several infinite sets of solutions to the paraxial wave equation, each
including the Gaussian mode as well as higher-order solutions. The two sets which are
of interest in this work are the LG modes and the Hermite-Gauss (HG) modes. Both
of these mode sets are complete, which means that they can be used to construct
an orthonormal basis-system in which all solutions to the paraxial wave equation
can be represented as linear combinations of the basis modes. Since all beam-like
electric fields should satisfy the paraxial wave equation, we can therefore use linear
combinations of LG or HG modes to describe any beam shape.

One feature that is common to all transverse modes of spherical optical resonators is
their self-reproducing intensity patterns; as they propagate, the overall scale of the
transverse field distribution will change, but the shape remains constant. This is to
be expected, since in order for a mode to be resonant in an optical cavity it must have
the same transverse field distribution after successive round trips of the cavity. The
Gaussian mode is an obvious example of a mode with a self-reproducing intensity
pattern, since the propagation of a mode may be described by Fourier transforming
the initial Gaussian amplitude cross section, and the Fourier transform of a Gaussian
function is another Gaussian function. In the next two sections we describe the two
aforementioned sets of higher-order solutions to the paraxial wave equation, the HG
and LG mode sets.

2.4 The Hermite-Gauss Mode Set

The HG mode set are solutions to the paraxial wave equation in Cartesian coordinates,
and exhibit rectangular symmetry. As a result of this, their amplitude profiles can be
easily separated into the x and y components. The separability in x and y means that
HG modes can be eigenmodes of astigmatic spherical optical resonators, which is
a result of significance for the work described in Chap. 5. As a consequence of this
separability, the full amplitude profile of HG modes can be expressed as

unm(x, y, z) = un(x, z)um(y, z). (2.12)

The un(x, z) and um(y, z) functions describe the variation of amplitude in the or-
thogonal x, z and y, z planes, and have an identical form. The variation in the x, z
plane is given by

2 The distance from the optical axis at which the beam power is 1/e2 of the power at the optical
axis.

http://dx.doi.org/10.1007/978-3-319-01183-7_4
http://dx.doi.org/10.1007/978-3-319-01375-6_5
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Fig. 2.3 Intensity patterns for Hermite-Gauss modes up the order 6. The intensity patterns are
normalised to have the same peak intensity, for visibility

un(x, z) =
(

2

π

) 1
4

exp (i (2n + 1) �(z))

× Hn

(√
2x

w(z)

)

exp

(

−i
kx2

2RC (z)
− x2

w2(z)

)

, (2.13)

where n is the relevant mode index, Hn is the Hermite polynomial of order n, and the
rest of the parameters are as previously defined. The order of a HG mode is simply
the sum of the two orthogonal transverse mode indices. The intensity patterns of the
HG modes up to the order 6 are shown in Fig. 2.3.

Although we first described the higher-order HG modes as mathematical solutions
to the paraxial wave equation, these modes are readily observed in a table-top optical
resonator when the input beam is slightly misaligned. This is because misalignments
or translations of the input beam with respect to the optical axis of the cavity cause
coupling from the HG00 mode into higher-order HG modes. This modal description
of misalignments and translations was formalised by Bayer-Helms in [3], and is
illustrated in Fig. 2.4. This plot shows the amplitude cross sections of a HG00 mode,
a HG10 mode, and the linear combination of both. We can see that to a reasonable
approximation, the combination of the two modes appears as a translated HG00 mode.
The addition of higher order modes to the sum, as prescribed by the Bayer-Helms
relations published in [3], increases the accuracy of the description of translations in
this manner. This modal description of beam shapes is employed in the interferometer
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Fig. 2.4 Amplitude cross sections of a HG00 mode of power 0.9 W, a HG10 mode of power 0.1 W,
and the sum of both with a total power of 1 W. To first order, the combination of HG00 and HG10
modes is equivalent to a translated HG00 mode

simulation package FINESSE [13], which was used for several simulation tasks
described in this thesis.

2.5 The Laguerre-Gauss Mode Sets

The LG modes are solutions to the paraxial wave equation in cylindrical polar coor-
dinates, as opposed to in Cartesian coordinates in the case of HG modes. Unlike the
HG modes therefore, the complex amplitude function for LG modes is not separable
in x and y, and so LG modes are not eigenmodes of astigmatic optical resonators. LG
modes are commonly expressed in two different forms, which I will refer to as the
sinusoidal mode set and the helical mode set. While both sets of LG modes have the
property of axisymmetry, only the helical set all have circularly symmetric intensity
profiles. This property can be useful for reducing the effects of Brownian thermal
noise, as is described in further detail later on in Sect. 2.6. Helical LG beams also
have the unusual property of carrying orbital angular momentum, which has made
them the subject of study by the scientific community in the last two decades or so
[1]. This trait has led to their use as ‘optical spanners’ and ‘optical waveguides’ [20]
in the bio-photonics and cold atoms fields.

The complex amplitude distribution of the sinusoidal LG mode set is given by
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where all variables are as defined for Eq. 2.11, except p, l and Ll
p, which are the radial

mode index, the azimuthal mode index, and the associated Laguerre polynomials
respectively. The complex amplitude of helical LG modes shown in Eq. 2.15 is similar
in most respects to that for the sinusoidal set, except for the different azimuthal
dependence of exp(ilφ) instead of cos(lφ). This azimuthal phase dependence is
what gives helical LG modes with non-zero l orbital angular momentum. The mode
order of both sets of LG beams is given by 2p + l.
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Fig. 2.5 Intensity patterns for helical LG modes up to order 9. The intensity patterns are normalised
to have the same peak intensity, for visibility
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Fig. 2.6 Intensity patterns
for sinusoidal LG modes
up to order 9. The intensity
patterns are normalised to
have the same peak intensity,
for visibility

The intensity distributions for the modes up to the order 9 of the helical and sinusoidal
LG mode sets are shown in Figs. 2.5 and 2.6 respectively. The radial mode index p
determines the number of radial nodes that appear in the amplitude cross section of
the beam and is equivalent for sinusoidal and helical modes. The azimuthal mode
index l determines the number of azimuthal nodes for the cosine modes. For the
helical modes however, l determines the number of 2π phase shifts that appear
around a circle of constant r and consequently the angular momentum per photon
in the beam, which is known to be l� [1]. One may think of the helical LG modes
as being a linear combination of two sinusoidal LG modes with the same mode
indices but with a phase shift of π/2 between them, since Euler’s theorem states
that exp(ilφ) = cos(lφ) + i sin(lφ). This fact is useful in understanding the results
reported in Sect. 4.4.

As with the HG modes, the LG modes are often observed in optical resonators as the
result of imperfect matching of the input beam to the cavity eigenmode. LG modes
tend to appear more as the result of axisymmetric mismatches however, such as the
mismatch of the input beam waist position or size to that of the cavity eigenmode,
rather than misalignments. This coupling can also be seen in the work of Bayer-
Helms in [3]. Figure 2.7 illustrates the connection between a mismatch of beam size
or position and the effects of adding higher-order LG modes. We see that to a rough
approximation, adding a LG10 mode to a LG00 mode results in another LG00 mode
but with a different beam size parameter. As in the case of Fig. 2.4, the addition of
higher order modes to the sum will increase the accuracy of this approximation.

Since both the LG mode sets and the HG mode sets are complete sets of solutions to
the paraxial wave equation, it follows that it is possible to describe any LG mode as a

http://dx.doi.org/10.1007/978-3-319-01183-7_4
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Fig. 2.7 Amplitude cross sections of a LG00 mode of power 0.9 W, a LG10 mode of power 0.1 W,
and sum of both with total power 1 W. To a reasonable approximation, the combination of LG00
and LG10 modes is equivalent to a LG00 mode with a smaller beam spot size parameter

linear combination of HG modes, and vice-versa. We can decompose the LG modes
into a weighted sum of HG modes by making use of the relations between Laguerre
polynomials and Hermite polynomials, as shown in [4]. The complex amplitude of
a LG mode may be given in terms of HG modes by

u pl(x, y, z) =
2p+l
∑

k=0

ikb(l + p, p, k)uHG
2p+l−k,k(x, y, z), (2.16)

where b(l + p, p, k) are the real coefficients given by

b(l + p, p, k) =
√

(2p + l − k)!k!
2(2p+l)(l + p)!p! (−2)kPl+p−k,p−k

k (0), (2.17)

and Pα,β
n (x) are the Jacobi polynomials. This transformation between LG and HG

mode sets is used to model LG modes with the simulation software FINESSE, which
was designed to use the HG mode set to describe beam shapes. The relation between
LG and HG modes demonstrates that it is incorrect to say that HG modes exclusively
describe misalignments and translations while LG modes describe exclusively mis-
matches of beam waist size and position, since both mode sets can describe all four
mismatches independently. However, due to the symmetries inherent in the two mode
sets, each is a more convenient basis set for describing the mismatches which share
their symmetry.
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2.6 Reduction in Thermal Noise for Higher-Order LG Beams

The thermal noise equations given in Sect. 2.1 have a dependence on the intensity
distribution of the readout beam. This dependence appears in the strain energy factor
U in Eq. 2.1 for the case of Brownian noise as

U = 2π
1 − σ2

Y

∫ ∞

0
Ĩ (k)2dk, (2.18)

where σ is the Poisson ratio, Y is the Young’s modulus and Ĩ (k) is the Hankel
transform of I (r), the normalised intensity of the readout beam [31]:

Ĩ (k) =
∫ ∞

0
I (r)J0(kr)r dr. (2.19)

In the case of a fundamental Gaussian mode readout beam, this gives the results for
U shown in Eqs. 2.2 and 2.3, for noise in the substrate and coating respectively. In
these equations we see an inverse relationship between Usub and the beam spot size,
w, and an inverse square relationship between Ucoat and w.

The dependence of the Brownian noise on the intensity distribution of the readout
beam is best understood in terms of ‘averaging’ over the fluctuations on the mirror
surface. Put simply, the more evenly spread the power in the readout beam is, the better
the beam averages over surface distortions, and the less significant the Brownian
component of phase noise in the beam becomes. The intensity of fundamental mode
beams with very large beam sizes on the mirrors will be very evenly distributed.
However, beam sizes on the mirrors cannot be made arbitrarily large due to problems
associated with beam clipping losses. This is where so-called flat beams such as mesa-
beams and higher-order LG beams have an advantage over the fundamental Gaussian
beam, as they can average over the surface better for a given clipping loss.

The clipping loss at an optical component is the fraction of the optical power in the
beam that is not incident on the optical surface, i.e. that which is lost beyond its
perimeter. This can be calculated as

Lclip = 1 −
2π∫

0

dφ

R∫

0

I (r,φ)rdrdφ, (2.20)

where I (r,φ) is the beam intensity distribution function and R is the radius of the
optical component. In order to make a fair comparison between the thermal noise
performances of different mode shapes we must ensure that all the modes compared
have the same clipping losses at a mirror of given size. Since higher-order LG beams
are more spatially extended it is therefore necessary to compare beams with different
spot sizes.
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Fig. 2.8 The upper panel shows the intensity as a function of distance from the optic axis for a
LG33 beam and a LG00 beam, both of which experience a 1 ppm clipping loss on a mirror with a
radius of 25 cm and have equal total beam powers of 1 W. The lower panel shows the integrated
beam power as a function of distance from optic axis for the same two beams

For a given amount of clipping loss on a circular3 mirror face of a given radius,
the optical power is distributed more evenly for higher-order LG beams than for the
fundamental LG00 beam. This effect is illustrated in Fig. 2.8. The upper panel of
Fig. 2.8 is a plot of the intensity profiles of a LG33 mode and a LG00 mode, both
of which have the same total power, and the same clipping loss of 1 ppm on a fixed
optic size. It is clear that the peak intensity of the LG00 is higher than that of the
LG33, indicating that more of the total power is concentrated in one region. The lower

3 Only cylindrical mirrors are considered in this discussion because this geometry gives the mirror
a high Q factor. This reduces the advantage of using higher-order HG modes, which would average
better over the surface of rectangular mirrors.
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panel shows the integrated beam power as a function of distance from the optical
axis, for the same two beams. The average gradient of the slope for the LG33 beam
is shallower than that of the LG00 beam, again demonstrating that the beam power
is more evenly spread over the surface of the optic for the LG33 beam.

The idea of using different beam shapes to reduce the thermal noise levels in this way
originally came from a proposal to use flat top, or ‘mesa’ beams [8]. However, these
beams have the disadvantage of being incompatible with the currently used spherical
mirror surfaces. The maturity of the technology to manufacture the ‘Mexican hat’
mirrors that would be required to support such a beam in a cavity is much less than the
technology for manufacturing spherical mirrors. Since higher-order LG modes also
offer a thermal noise advantage, but are compatible with the currently used spherical
mirrors, we found this idea to be more favourable for consideration in the context of
gravitational wave interferometers.

2.7 Coating Brownian Thermal Noise Reduction Factors
for Higher-Order Modes

2.7.1 Helical Laguerre-Gauss Modes

After Mours’ initial paper suggesting the use of higher-order LG modes as a flat
beam candidate for thermal noise reduction [26], Vinet published calculations of the
thermal noise performance for mesa-beams and higher-order LG modes in [31], and
also for higher-order HG modes in [30]. I will summarise these results here for the
coating Brownian noise, as this is currently expected to be the dominant test mass
thermal noise source in the second generation of gravitational wave detectors. I will
also take the additional step of accounting for the different beam sizes required to
maintain a fixed clipping loss of 1 ppm for each mode.

In [31] Vinet calculated the advantage of higher-order beams for coating Brownian
noise in the numerical values gpl , which scale the strain energy as

U CoatBrown
pl = δC

(1 + σ)(1 − 2σ)

2
√

πYw2
gpl (2.21)

where all other symbols are as defined in Eq. 2.3. Table 2.1 shows some numerical
values of gpl .

However, in order to make a fair comparison between the different modes, we should
compare beams with the same clipping losses. Table 2.2 shows the beam size scaling
factors apl for LGpl modes relative to the LG00 mode in order that each mode has
the same clipping loss of 1 ppm on an arbitrary sized mirror.



2.7 Coating Brownian Thermal Noise Reduction Factors for Higher-Order Modes 35

Since the coating Brownian noise scales with the inverse square of the beam size
parameter (see Eqs. 2.3 and 2.21), we must take account of the beam size scaling
factors when calculating the real thermal noise improvement of higher-order LG
modes. We therefore calculate the actual coating Brownian noise power spectral
density improvement factor as

�CoatBrown
pl = a2

pl

gpl
. (2.22)

These coating Brownian noise improvement factors for higher-order LG modes,
normalised for 1 ppm clipping loss, are shown in Table 2.3.

In the case of the LG33 mode, for which the majority of the research described in
thesis was carried out, we see that the coating Brownian noise power spectral density
is reduced by a factor of 2.65 from the level experienced when using the LG00
mode as the readout beam. It was this clear and significant potential advantage of
using the LG33 mode that encouraged us to investigate it further within the context of
gravitational wave interferometers. The improvement factors offered by LGpl modes
for other thermal noise sources are shown in appendix A.

2.7.2 Hermite-Gauss Modes

Although higher-order HG modes might not be expected to give as good thermal
noise performance as the higher-order helical LG modes due to their lack of circularly
symmetric intensity profiles, it is still interesting to see what improvement they can
offer over the LG00 mode. This is especially interesting in light of some of the
results reported in Chap. 5, where we saw that a 10 m suspended cavity appeared to
preferentially resonate with HG modes despite being pumped with a LG mode.

The beam size scaling factors anm for HGnm modes, relative to the LG00 mode,
required to give a 1 ppm clipping loss are shown in Table 2.4.

Table 2.1 Coating Brownian noise scaling factors gpl for LGpl modes relative to the LG00 mode.
The same beam size parameter is assumed for each mode

l 0 1 2 3 4 5
p

0 1 0.5 0.34 0.27 0.22 0.19
1 0.5 0.31 0.23 0.19 0.16 0.14
2 0.38 0.25 0.19 0.16 0.14 0.12
3 0.31 0.21 0.17 0.14 0.12 0.11
4 0.27 0.19 0.15 0.13 0.11 0.10
5 0.25 0.17 0.14 0.12 0.11 0.10

http://dx.doi.org/10.1007/978-3-319-01375-6_5
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Table 2.2 Beam size scaling factors apl between LG00 and LGpl modes that give 1 ppm clipping
loss on an arbitrary sized circular mirror [30]

l 0 1 2 3 4 5
p

0 1.00 0.836 0.741 0.675 0.626 0.587
1 0.920 0.785 0.707 0.650 0.606 0.571
2 0.850 0.747 0.679 0.628 0.589 0.556
3 0.804 0.715 0.655 0.609 0.573 0.544
4 0.768 0.689 0.634 0.593 0.559 0.535
5 0.737 0.666 0.616 0.578 0.547 0.529

The results for the coating Brownian noise power spectral density improvement
factors �CoatBrown

nm for HGnm modes over the LG00 mode were calculated in the
same way as for LG modes as

�CoatBrown
nm = a2

nm

gnm
. (2.23)

Table 2.3 Coating Brownian noise power spectral density improvement factors �CoatBrown
pl for

LGpl modes over the LG00 mode, where all modes are scaled to give 1 ppm clipping loss on a fixed
mirror size

l 0 1 2 3 4 5
p

0 1.00 1.40 1.61 1.69 1.78 1.81
1 1.66 1.99 2.17 2.22 2.30 2.33
2 1.90 2.23 2.42 2.47 2.47 2.58
3 2.09 2.44 2.52 2.65 2.74 2.69
4 2.18 2.50 2.68 2.70 2.84 2.86
5 2.17 2.61 2.71 2.78 2.72 2.80

Table 2.4 Beam size scaling factors anm between HG00 and HGnm modes to give 1 ppm clipping
loss on an arbitrary sized circular mirror

m 0 1 2 3 4 5
n

0 1 0.910 0.842 0.789 0.746 0.710
1 0.910 0.850 0.798 0.754 0.718 0.686
2 0.842 0.798 0.756 0.721 0.689 0.662
3 0.789 0.754 0.721 0.690 0.664 0.640
4 0.746 0.717 0.690 0.664 0.640 0.619
5 0.710 0.687 0.662 0.640 0.619 0.600
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Table 2.5 Coating Brownian noise power spectral density improvement factors �CoatBrown
nm for

HGnm modes over the HG00 mode, where all modes are scaled to give 1 ppm clipping loss on a
fixed mirror size

m 0 1 2 3 4 5
n

0 1 1.10 1.11 1.08 1.05 1.02
1 1.10 1.29 1.33 1.40 1.30 1.27
2 1.10 1.33 1.40 1.41 1.41 1.39
3 1.08 1.32 1.41 1.44 1.45 1.45
4 1.05 1.30 1.41 1.45 1.47 1.47
5 1.02 1.27 1.39 1.45 1.47 1.48

The numerical values for these improvement factors are shown in Table 2.5 for HGnm

modes up to HG55. From this table we can see that higher-order HG modes do have
a coating Brownian noise power spectral density advantage over the HG00 mode,
though this improvement is less significant than those calculated for the LG modes
as shown in Table 2.3. At the equivalent mode order as the LG33 mode, the HG45
offers only a factor 1.47 improvement, compared with the LG33 improvement of 2.65.
The improvement factors offered by HGnm modes for other thermal noise sources
are shown in appendix A.

2.8 Thermal Lensing

Another thermal effect, aside from thermal noise itself, which must be considered
is that of thermal lensing in the optical substrate materials. Light is absorbed in
the substrates and coatings of the partially transmissive mirrors; most significantly
the power recycling mirror, the arm cavity mirrors and the central beam splitter.
For the LG00 mode, absorption is strongest in the centre of the mirrors, on the optic
axis of the beam. A radial thermal gradient results, and if the thermo-refractive
coefficient ∂n

∂T or the thermal expansion coefficient α of the substrate is non-zero, a
thermal lens is produced. An inability to accurately compensate for the thermal lens
effect, which will vary with different laser powers and may be non-stationary in time,
will lead to imperfect matching of the beam to the interferometer eigenmode and
those of the arm cavities therein. This leads to a power loss within the interferometer
and an increase in light coupled into higher-order modes [9].

Thermal compensation systems have been in place at the LIGO and Virgo detectors
already, but these have proven tricky to implement successfully [23]. With higher
laser powers expected in future detectors an advance in the methods of thermal com-
pensation may be required to capitalise on the potential shot noise improvement.
Vinet shows in [31] that the higher-order LG modes have a significantly better per-
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formance than the LG00 mode in terms of thermal distortions of mirrors caused by
power absorption in the coating, due to the more even absorption of power across the
mirror surface. This is a considerable advantage of higher-order LG beams, as deal-
ing with high-power instabilities such as non-stationary thermal lensing is expected
to be one of the major difficulties in commissioning and running the advanced detec-
tors. The use of higher-order LG modes can be expected to relax the requirements
on the thermal compensation subsystem.
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Chapter 3
Simulation Study into LG33 Mode
Interferometry and Production

Motivated by the potential factor of 2.65 improvement in coating Brownian noise
power spectral density using the LG33 mode, as shown in Sect. 2.7, a numerical inves-
tigation into the interferometric performance of the LG33 mode was pursued. This
chapter includes the methods and results of the numerical interferometric perfor-
mance study, in which the compatibility of the LG33 mode with standard techniques
in the gravitational wave interferometer community were investigated, such as the
Pound-Drever-Hall longitudinal error signal generation for optical cavities, and the
Ward technique for generating alignment error signals for cavities. Also investigated
were the coupling of alignment degrees of freedom to phase noise in an advanced
detector-like layout, and finally the potential increase in observable event rate was
calculated for two typical gravitational wave sources with the Advanced Virgo detec-
tor, in the case where the LG33 mode was used in place of the LG00 mode.

Following the positive results of the numerical interferometric performance study,
we proceeded with a numerical study into the means of higher-order LG mode gener-
ation. This study included the design of phase profiles for use with spatial light modu-
lators or diffractive optical elements that can convert the LG00 mode into higher-order
LG modes, as well as the optimisation of the beam size parameter upon conversion
and a derivation of the beam parameters subsequent to conversion.

3.1 Interferometric Performance Simulation Study
of the LG33 Mode

For any new technology to be seriously considered for inclusion in the design of
a gravitational wave interferometer, its compatibility with other techniques that are
already in place must first be demonstrated. Typically the development of a new
technology for gravitational wave interferometers happens in several stages; first the
potential advantages of the technology are evaluated, secondly a simulation study
is performed to assess the compatibility with the interferometer, thirdly table-top
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experiments are performed to demonstrate the technology, and finally the technology
is tested on a suspended prototype interferometer. In this section we will describe
the second, and to some degree also the first of these stages, under the banner of
an interferometric performance study. Interferometric performance in this context
refers specifically to the ability to generate the required longitudinal and alignment
control signals, the level of coupling of a number of variables to the measured phase
(phase noise analysis), and finally the maximum achievable detector sensitivity.

The first consideration to ensure a realistic analysis of the performance of the LG33
mode was the beam sizes which should be compared. As we saw in Sects. 2.6 and
2.7, a smaller beam size is required for the LG33 mode in order to have the same
clipping loss as the LG00 mode for a fixed optic size. If we take the maximum allowed
clipping loss to be 1 ppm,1 the LG33 beam size at an optic must be a factor of 1.64
smaller than the LG00 beam which also experiences the same clipping loss.

The performance of three different configurations for a symmetric 3 km cavity were
compared, which are referred to as the LG33, LGlarge

00 and LGsmall
00 configurations. The

LG33 and LGlarge

00 configurations both have a clipping loss of 1 ppm at the cavity
mirrors, thus the beam size at the mirrors for the LGlarge

00 configuration is a factor
of 1.64 larger than for the LG33 configuration. The LGsmall

00 configuration has the
same spot size at the mirrors as the LG33 configuration, but uses a LG00 beam,
and therefore has a lower clipping loss. The LGsmall

00 configuration is really a control
configuration, included in the study in order to better separate the effects due beam
parameters and effects due directly to mode shape. The cavity mirror curvatures for
each configuration are shown in Table 3.1, and the rest of the cavity parameters were
as detailed in the Advanced Virgo reference design [1].

Table 3.1 Cavity parameters for each of the three different configurations used in the study

Configuration LGlarge
00 LG33 LGsmall

00

RC (m) 1537 1910 1910
w (mm) 57.7 35.2 35.2
w0 (mm) 8.9 16.3 16.3
L (km) 3 3 3
Finesse 1227 1227 1227

RC , w, w0 and L refer to the mirror radii of curvature, the beam spot size at the mirrors, the beam
waist size, and the cavity length respectively. The cavity finesse is defined as the ratio of the full
width at half maximum of a cavity resonance to the separation of successive resonances [2]. The
LG33 and LGsmall

00 configurations have the same cavity parameters, since the LGsmall
00 configuration

was a control test to help distinguish between the effects of beam parameters and mode shape

1 This is a somewhat arbitrary number, but it is commonly used throughout the gravitational wave
community, and is related to the acceptable round trip cavity losses.

http://dx.doi.org/10.1007/978-3-319-01375-6_2
http://dx.doi.org/10.1007/978-3-319-01375-6_2
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3.1.1 Longitudinal Control Signals

The first control signal investigated was the longitudinal error signal for a single cav-
ity, generated using the Pound-Drever-Hall (PDH) modulation/demodulation error
signal generation technique [3]. The compatibility of the LG33 mode with the PDH
method is crucial to its application in gravitational wave interferometers, as this
method is used to control many degrees of freedom within gravitational wave inter-
ferometers, and as such is one of the key techniques that enables their successful
operation. One would expect the LG33 mode to perform identically as for the LG00
in this test, as the PDH error signal is known to be dependent not on the transverse
beam profile, nor on the cavity geometry, but simply on the average phase of the
beam within the cavity. Nonetheless, a demonstration of this result was required to
confirm the expectation.

A FINESSE [4] model was made of each configuration, in which a carrier light
field is phase modulated and then used as the pump light for a 3 km cavity, with
geometry prescribed by the particular beam parameters for that configuration. The
reflected light from the cavity is detected with a photodetector, and demodulated at
the original modulation frequency. The cavity length was scanned over the resonant
peak, and the resulting error signal plotted, as shown in Fig. 3.1. From this figure we
can see that the resulting longitudinal control signal was identical for all three of the
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Fig. 3.1 PDH error signals for the 3 km cavity, for the three different configurations. The upper
plot shows the results for the LG33 configuration, the lower left plot is for the LGlarge

00 configuration
and the lower right plot is for the LGsmall

00 configuration
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considered configurations, except with the opposite sign for the LG33 mode case.2

This confirmed our expectation, providing the evidence that crucially the LG33 is
compatible with the widely used PDH error signal generation method.

3.1.2 Alignment Control Signals

As well as length sensing and control, angular sensing and control is crucial to
maintaining the stable operation and maximum sensitivity of a gravitational wave
interferometer. To investigate how the LG33 mode performs in this respect, an align-
ment scheme based on the Ward technique described in [5], and subsequently in
[6] was designed for the same 3 km cavity configurations as previously described.
The optical layout for this scheme is shown in panel A© of Fig. 3.2. As in the case
of the PDH signal investigation, the carrier light is phase modulated and passed into
the cavity, although this time via a beam splitter.

The reflected beam from the cavity is split in two, and each resulting beam is passed
through a telescope and detected with a quadrant photodetector. These telescopes
are designed such that the Gouy phase (see Eq. 4.2) difference between the beams
at each quadrant photodetector is 90◦, in order to provide the maximum possible
orthogonality between alignment signals from the end mirror and the input mirror.
The difference signal from each quadrant photodetector is demodulated by mixing
with the initial modulation frequency. The demodulation phase was chosen so as
to maximise the slope of the error signal corresponding to the mirror for which the

(a)

{
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IMY

EMX

EMYLASER BS

QPD1

IMX

L=3000m

EMX

QPD2
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B(b)

Fig. 3.2 Two optical layouts used in the alignment analysis simulations. A© shows the single arm
cavity alignment control scheme investigated, and B© shows the differential misalignment of arm
cavities, for which the coupling into dark port power was analysed. Reprinted figure with permission
from [11]. Copyright 2009 by the American Physical Society

2 The opposite sign of the error signal in the case of the LG33 mode is of no consequence; one
could simply alter the demodulation phase or invert the signal after demodulation to recover the
same sign.

http://dx.doi.org/10.1007/978-3-319-01375-6_4


3.1 Interferometric Performance Simulation Study of the LG33 Mode 45

Fig. 3.3 Alignment error
signals for a 3 km cavity in
the LGsmall

00 configuration, as
sensed by both quadrant pho-
todetectors QPD1 and QPD2
as a function of misalign-
ment angle β of the cavity
end mirror (top) and input
mirror (bottom). Reprinted
figure with permission from
[11]. Copyright 2009 by the
American Physical Society
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photodetector is required to sense the alignment. We performed the analysis for the
case of rotations of the mirrors about the vertical axis (yaw) only, but the results are
equally applicable to rotations about the horizontal axis (pitch). In order to match
as closely as possible the conditions under which the alignment control system will
be developed in practice, we tuned the parameters rather than using the theoretical
optimum parameters.

Figure 3.3 shows the alignment signals sensed by each quadrant photodetector for
misalignments of both the cavity input mirror and the end mirror, for the LGsmall

00
configuration. The top plot shows that at the working point, the error signal slope
observed by QPD1 when the end mirror is misaligned is much steeper than that
observed by QPD2. The lower plot shows the reverse scenario when the input mirror
is misaligned; the steepest slope is observed by QPD2. This demonstrates a good
separation of the two different alignment sensing degrees of freedom between the
two sensors, which would enable the construction of a functioning alignment control
loop for each degree of freedom.
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The alignment sensing figure of merit for each configuration can be further sum-
marised by its control matrix [7]. The elements σmirror

detector of these control matrices are
the slopes of the error signal at the working point as measured at quadrant photode-
tectors QPD1 and QPD2, for misalignments of the cavity input mirror IMX, and end
mirror EMX, as shown in Eq. 3.1.

Cconfiguration =
(

σIMX
QPD1 σEMX

QPD1

σIMX
QPD2 σEMX

QPD2

)

(3.1)

The resulting control matrices for each of the three cavity configurations were as
follows:

CLG33 = 7.444

(

1 0.003
0.368 0.641

)

C
LGlarge

00
= 17.77

(

1 0.862
0.645 0.153

)

CLGsmall
00

= 5.615

(

1 0.009
0.385 0.639

)

.

An ideal control matrix would be proportional to the identity matrix, since the off
diagonal elements correspond to the presence of information from the unwanted
mirror in a given photodetector signal. None of the configurations give an ideal
control matrix, although it is clear that some perform better than others. Comparing
the two configurations with the same clipping loss at the cavity mirrors, we can see
that the LG33 configuration performs much better than the LGlarge

00 configuration. This
is evident in the fact that the off-diagonal elements in the C

LGlarge
00

control matrix are

larger with respect to the on-diagonal elements than in the CLG33 control matrix. In
fact, the off diagonal elements in C

LGlarge
00

are significantly larger even than the σEMX
QPD2

element, demonstrating that misalignments of the end mirror couple more strongly
to QPD1 even than QPD2, which should mostly sense end mirror misalignments.

A comparison between the CLG33 and the CLGsmall
00

control matrices shows very little
difference between the two. Since these two configurations have the same cavity
geometry and thus the same beam parameters, we can conclude that in this case the
beam shape does not play a significant role in determining the alignment sensing
performance of a configuration. We are left to conclude that the main factor deter-
mining the performance is in fact the cavity geometry, and that the LG33 mode is
compatible with the alignment scheme used in the simulation.

3.1.3 Coupling of Cavity Mirror Tilt to Longitudinal Phase

As well as investigating the compatibility of the LG33 mode with the commonly
used interferometric sensing and control methods, we also investigated two of the
main couplings of alignment degrees of freedom to noise in an interferometer. It is
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Fig. 3.4 An illustration of the coupling mechanism between misalignment and longitudinal phase
in a plane-concave cavity. As the curved mirror is misaligned, the cavity eigenmode axis shifts,
resulting in a longer round trip path length

important to ascertain the impact of changing the beam shape on these couplings,
since increased couplings from alignment degrees of freedom to phase noise will
necessitate more stringent requirements on the residual alignment fluctuations.

One such coupling is between cavity mirror misalignment and the longitudinal phase
in one of the arm cavities of an interferometer. As one of the cavity mirrors is
misaligned, the effect on the cavity eigenmode optical axis will be either a tilt or shift,
or some combination of both, with respect to the aligned axis [6, 8], depending on the
cavity geometry and which mirror is misaligned. In the case of a symmetric cavity,
the eigenmode will both tilt and shift when either of the mirrors are misaligned. A
shifted eigenmode will experience a microscopically longer cavity round trip length
than the perfectly aligned eigenmode. This effect is illustrated in Fig. 3.4 for the
simple example of a flat-concave cavity, in which a misalignment of the concave
mirror produces purely a shift in the eigenmode optical axis.

In a real interferometer, the longitudinal degree of freedom of the cavity will be
controlled using the PDH method to keep it on resonance. Length changes caused
by fluctuations in the alignment will be compensated for by the longitudinal control
loops, and so the alignment fluctuations couple to the longitudinal degree of freedom,
and hence to the gravitational wave strain channel as noise. Since this coupling is
geometric in origin, one would not expect it to differ greatly between the LG33
configuration and the LGsmall

00 configuration, since the cavity geometry is equal for
both. Figure 3.5 shows the intracavity power as a function of cavity end mirror tilt
on the x-axis and longitudinal cavity tuning on the y-axis, for each of the three
configurations. These plots demonstrate the level of coupling between end mirror
tilt and longitudinal phase by showing the change in tuning required to keep the
intracavity power at a maximum for a given tilt. Comparing the LG33 and LGlarge

00
configurations, we can see that the coupling is much stronger in the LGlarge

00 case (note
the different y-axis scales). Over the 1μrad tilt range the resonant tuning of the LG33
configuration shifts by about 0.4◦, compared to about 5◦ for the LGlarge

00 configuration.3

The results for the LG33 and LGsmall
00 configurations are very similar, as expected since

they have the same cavity parameters. This suggests that the coupling from tilt to

3 Cavity tuning, expressed in degrees, is a convenient definition of either cavity length change as a
fraction of wavelength, or frequency change as a function of cavity FSR.
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Fig. 3.5 Intra cavity power as a function of cavity end mirror tilt angle β and longitudinal tuning
φ for the three different configurations. The first two configurations show very similar results, but
the LGlarge

00 configuration shows a much stronger coupling from tilt to tuning (note the larger scale
on the tuning axis in the LGlarge

00 plot). Reprinted figure with permission from [11]. Copyright 2009
by the American Physical Society

longitudinal phase in the cavity is dominated by the geometry of the cavity, and not
by the beam shape. This is a positive result for the LG33 mode, in that it performs
intrinsically no worse than the LG00 mode. In fact, when compared against the LG00
mode with the same clipping loss of 1 ppm in a 3 km cavity, the LG33 mode has a
significantly lower coupling from tilt to longitudinal phase.

3.1.4 Coupling of Differential Arm Cavity Misalignment to Dark
Port Power

The second alignment to interferometer noise coupling that we investigated was
the coupling of differential arm cavity misalignment to power at the interferometer
output port. If the two arm cavities are differentially misaligned, the overlap of the
two beams at the central beam splitter will be imperfect, leading to a change in the
light power present at the output port of the interferometer, as illustrated in panel B©
of Fig. 3.2. If this differential misalignment varies with time, the power measured at
the dark port will also vary with time, producing a signal at the photodetector that
is indistinguishable from gravitational wave signals. Static misalignments will also
increase the coupling of common mode noise sources such as laser power fluctuations
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Fig. 3.6 Dark port power as a function of differential arm cavity misalignment for the three different
configurations. The black line shows the limit calculated for dark port power based on a differential
arm length requirement of 10−15 m for a dark fringe offset of 10−12 m. Reprinted figure with
permission from [11]. Copyright 2009 by the American Physical Society

to the gravitational wave channel, since the interferometer will no longer be operating
on an exactly dark fringe.

A FINESSE model was made to obtain values for the output power enhancement
due to differential misalignment for each of the three previously described cavity
configurations, as shown in Fig. 3.6. Also plotted in Fig. 3.6 is a reference limit on
the acceptable dark port power, around 7.1 ×10−9 W, calculated from a differential
arm length requirement of 10−15 m [9] and a dark fringe offset of 10−12 m [10].
Comparing the LG33 and LGlarge

00 configurations, we can see that the LG33 configu-
ration can tolerate larger differential misalignments before surpassing the reference
limit. However, both LG33 and LGlarge

00 configurations are outperformed by the LGsmall
00

configuration in this investigation. This demonstrates that the coupling of differential
arm cavity misalignment to dark port power depends both on the beam parameters
and the beam shape.

The dependence on beam parameter and shape can be explained by considering the
relative phase difference between the beams from the two arms across the overlapping
region at the beam splitter. If the wavefronts of the two beams are not parallel,
sinusoidal fringes are formed with a spacing determined by the angle between the
propagation vectors of the two beams.4 The larger the overlapping region is, the

4 In the misalignment regime we are concerned with (100s of picoradians), the fringe spacing is of
the order of km; far greater than the overlapping region of the beams.
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larger the portion of the fringe that is within the overlapping region will be, and thus
the less complete we should expect the interference to be. This effect depends on the
true spatial extent of the beams at the overlapping region, which in turn depends on
both the beam size parameter and the beam shape.

3.1.5 Coupling to Unwanted Modes Due Mode Mismatch

Although mode matching is usually considered a technical detail rather than a fun-
damental concern, we found it worthwhile to compare the effects of mode mismatch
into a cavity for the LG33 mode and the LG00 mode. This was partly in light of
experimental observations that showed that the LG33 mode was more sensitive to
mode mismatch in a cavity than the LG00, such as those described in Sect. 5.4.

Figure 3.7 shows the theoretical coupling into a range of mode orders caused by
mismatch of the beam waist to the cavity waist, for both the LG00 mode and the
LG33 mode in a cavity similar to the Glasgow 10 m cavity described in Sect. 5.4. It is
clear that the coupling is much stronger for the LG33 mode; when the injected waist
is just 1.2 times the size of the cavity waist, the order 9 will no longer be the dominant
mode order in the cavity. The LG33 mode also shows a stronger coupling into other
modes when the injected waist position is mismatched to the cavity waist position.
This increased susceptibility of the LG33 mode to mode mismatch is not likely to be a
direct concern in terms of phase noise within a gravitational wave interferometer, but
it should be borne in mind as a practical consideration when determining acceptable
tolerances in beam waist size and position mismatch.

3.1.6 Sensitivity Improvements for Advanced Virgo

The final comparison between the performance of the LG00 and LG33 modes was in
terms of the overall detector sensitivity. Several scenarios for using the LG33 mode
in the Advanced Virgo detector were evaluated, and published in [11], but here we
just discuss a scenario which compares the sensitivity of the detector with LGlarge

00
and LG33 modes. In each case the detector sensitivity was calculated using a version
of Gravitational Wave Interferometer Noise Calculator [12], specially adapted for
Advanced Virgo, and the thermal noise scaling factors for the LG33 mode shown in
Sect. 2.7.

Table 3.2 shows the results of the calculation for the two cases NS/NS, and BH/BH,
where the signal recycling detuning (SR det.) [13] was optimised for detection of
signals from binary neutron star inspirals and binary black hole inspirals respectively.
The figures of merit chosen were the effective detection ranges for the two signal
sources, �NS/NS and �BH/BH. According to these results, the LG33 mode provides
a relative improvement of the inspiral ranges by around 20 % and 25 % for signal

http://dx.doi.org/10.1007/978-3-319-01375-6_5
http://dx.doi.org/10.1007/978-3-319-01375-6_5
http://dx.doi.org/10.1007/978-3-319-01375-6_2
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Fig. 3.7 Theoretical coupling of beam waist size mismatch to power in different mode orders. The
upper plot shows the coupling for a LG33 input mode, and the lower plot shows the coupling for
the LG00 input mode. Plots courtesy of Charlotte Bond

recycling detunings of 750 and 300 Hz respectively, compared to the LG00 mode.
This corresponds to a potential increase by around a factor of 2 in the observable event
rate for binary black hole and neutron star inspiral sources of the Advanced Virgo
detector by using the LG33 mode instead of the LG00 mode. It is worth bearing in
mind that while this constitutes a significant improvement in the detection prospects
of Advanced Virgo, one would expect the benefits to be even more pronounced
in third generation interferometers, in which the levels of the other limiting noise
sources should be significantly lower.
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In summary, for all the interferometric performance aspects analysed, the LG33 con-
figuration performs significantly better than the LGlarge

00 configuration which has the
same clipping loss of 1 ppm on the Advanced Virgo cavity mirrors. For the lon-
gitudinal error signal generation with the PDH method, the alignment error signal
generation using the Ward technique, and the coupling of cavity mirror tilt to phase,
the beam shape had little or no effect on the result. In each of these cases the cavity
geometry was shown to be the dominant factor in determining the performance, by
comparing the LG33 configuration with the control configuration LGsmall

00 . In the case
of differential arm cavity misalignment coupling to dark port power, both the beam
shape and the beam size parameter were shown to influence the result. However, in
this case the LG33 configuration still performed better than the LGlarge

00 configuration.
It was also shown that an increase in the observable inspiral event rate by around
a factor of two could be achieved by using the LG33 mode in place of the LG00
mode in the Advanced Virgo detector. The results of this study suggest that for the
Advanced Virgo case, not only would using the LG33 mode improve the sensitivity of
the detector, but it would also make the alignment sensing more achievable, as well
as leading to less stringent alignment requirements than for the LGlarge

00 configuration.
This result gave a very positive outlook for LG mode technology within gravita-
tional wave detectors at this point, and so we proceeded with plans for a table-top
demonstration of LG mode interferometry.

3.2 Numerical Investigation into LG33 Beam Generation by
LG00 Phase Profile Modulation

Before beginning a table-top demonstration of LG mode interferometry, it was neces-
sary to develop our understanding of the various methods of generating higher-order
LG modes. In this section I will briefly describe the work on higher-order LG mode
production methods that had been previously described in the literature, and then
describe a series of numerical investigations that were performed into a particular
subset of these methods; those that achieve higher-order mode production by con-
verting from the LG00 mode by modulating its phase profile. This study gave us a
solid foundation upon which to begin the table-top experiments with higher-order
LG modes that are described in Chap. 4.

Table 3.2 Results of the GWINC calculation for detection ranges of two standard gravitational
wave sources with the Advanced Virgo reference design, for both the LGlarge

00 and LG33 cavity
configurations

Configuration SR det. [Hz] �NS/NS [Mpc] �BH/BH [Mpc]

LGlarge
00 750 126 900

LG33 750 148 1140
LGlarge

00 300 130 580
LG33 300 163 715

http://dx.doi.org/10.1007/978-3-319-01375-6_4
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3.2.1 Overview of Previous Work in Laguerre-Gauss Beam
Production

Although at the time of starting my PhD studies the idea of using LG modes in
gravitational wave detectors was relatively new, having been first described in print
in 2006 [14], LG modes had already been used in other research areas for at least 16
years. However, so far the optimization of higher-order LG beam sources has largely
been in a different direction to that which is required by the gravitational wave
detector community. For example the use of LG beams in the cold atoms and optics
fields often requires high-speed manipulation of the beam parameters and positions,
whereas the use of LG modes in high-precision interferometry depends on mode
purity and stability. One of the leading candidate methods for the latter is the use of
diffractive optic elements (DOEs), or phase plates for conversion from a LG00 mode
to a higher-order LG mode, due to their stability, as well as potentially high conversion
efficiency and output mode purity [15, 16]. Other conversion methods include using
computer generated holograms [17], spatial light modulators [18] and astigmatic
mode converters [19, 20]. However, none of these mode conversion methods are
perfect, and some light inevitably remains in unwanted modes. A comparison of the
merits and drawbacks of each method can be found in the paper [21].

We decided that the LG mode production techniques that used phase profile modula-
tion to convert from the LG00 mode to higher-order LG modes were the most suitable
for our purposes. This is because there are two techniques which work in this way; the
spatial light modulator (SLM) technique and the etched diffractive optical element
(DOE) technique. These two techniques are complementary in that while the SLM
method is adaptable but lacks stability and efficiency, the DOE method is stable and
efficient, but lacks adaptability. Our plan was to use the SLM method at first, and
then progress to the DOE method at a later stage once we had a phase profile design
and conversion setup that fulfilled our requirements.

3.2.2 Phase Modulation Profile Design

At the most basic level, the requirement for a phase modulation profile to convert a
LG00 beam into a higher-order LG beam is to replicate the phase cross section of the
desired LGpl mode. Replicating the amplitude cross section can be achieved to some
extent using a phase modulating surface, as described later on in this section, but for
now we will just discuss the replication of the phase cross section. We will consider
the phase cross sections of arbitrary order LGpl modes, for simplicity at the beam
waist. In polar coordinates, the phase cross section Psin(r,φ)pl of the sinusoidal LG
modes at the beam waist (i.e. where z = 0) is
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Fig. 3.8 Two phase modulation profiles of physical dimensions 14.6×14.6 mm and 768×768
pixels, created to convert a LG00 mode to a cosine LG33 mode (left panel) and a helical LG33 mode
(right panel), each with a spot size at the phase modulating surface of w=2 mm
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and for helical LG modes
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2r2

w2
0

))

+ lφ, (3.3)

where w0 is the beam waist size, and � is the Heaviside function. The function of a
phase modulation profile is to imprint this desired phase cross section on the incident
beam, which in our case is a LG00 beam. Two examples of such phase cross sections
are shown in the left and right panels of Fig. 3.8, for converting to the sinusoidal and
helical LG33 modes respectively.

3.2.2.1 Blazed Phase Grating Profile

When designing phase modulation profiles, it is useful to add a blazed grating phase
pattern to the initially required phase profile, so as to spatially separate the modulated
light from the light which remains unmodulated during the interaction with the phase
modulating device. In the case of a reflective type SLM, this unmodulated component
may be the result of direct reflection from the front surface of the SLM screen. In both
SLMs and DOEs, some unmodulated light also results from the quantization of the
phase levels [22]. Without adding a blazed grating, the unmodulated light propagates
along the same axis as the modulated light, and can spoil the desired effects of the
phase modulation profile on the incident beam. The use of blazed phase modulation
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Fig. 3.9 Example of blazed phase modulation profiles for generating sinusoidal (left) and helical
(right) LG33 modes

profiles is commonplace in beam shaping applications, and was used for LG mode
production with an SLM in the work reported in [18].

Figure 3.9 shows examples of blazed phase profiles for converting the LG00 mode
to both sinusoidal and helical LG33 modes. The blazed phase profile for the helical
LG33 mode shows the ‘forked grating’ pattern that is often referred to in the literature
concerning LG mode generation, as for example in [17, 23] and [24].

The blazing angle should be designed such that the diffraction angle into the first
order is greater than the divergence angle of the beam. Most phase profile modulating
devices, whether SLMs or DOEs, will have some level of spatial discretisation. This
discretisation will also produce diffraction orders, so one should take care to avoid
an overlap of these orders with the first diffraction order from the blazed grating in
order to achieve high purity in the desired diffraction order.

3.2.2.2 Contoured Blazing for Intensity Modulation

The use of a blazed phase grating to separate modulated light from unmodulated
light also affords one the opportunity to achieve some amplitude modulation of the
modulated beam, as well as phase modulation. This can be achieved by adjusting the
amplitude of the blazing pattern to be proportional to the desired mode amplitude
shape. The diffraction efficiency into parts of the output beam corresponding to
the lower blazing amplitudes will be lower, hence providing the required amplitude
modulation. In fact, this technique can also be used to correct for the inhomogeneous
amplitude profile of the LG00 beam incident on the phase modulating surface, simply
by dividing the amplitude of the blazing pattern by the LG00 amplitude profile.

Figure 3.10 shows examples of the amplitude contoured blazed phase modulation
profiles for converting to both the sinusoidal and helical LG33 modes. It should be
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Fig. 3.10 Example of amplitude contoured blazed phase modulation profiles for generating sinu-
soidal (left) and helical (right) LG33 modes

noted that although this technique can be used to increase the purity of the generated
mode, in general it will reduce the overall efficiency of conversion into the desired
mode. Experimental results comparing the use of phase profiles with and without
amplitude contouring are shown in Sects. 4.2.1 and 4.3.3.

3.2.3 Simulations of Conversion from LG00 Beam to a LG33 Beam

To test the functionality of the phase modulation profiles it was necessary to simulate
the beam conversion procedure. These simulations were performed in Matlab using
a largely self developed package of scripts, in which the complex electric field ampli-
tudes at every point in a grid are described with a matrix of complex numbers. The
properties of the input LG00 beam and the phase modulation profile can be adjusted,
and the properties of the resulting beam observed, thus enabling an optimisation of
the conversion procedure to be carried out. The interaction of the input LG00 beam
with the phase modulating surface is represented in the simulation as an element by
element multiplication of the electric field complex amplitude matrix and the imagi-
nary phase modulation profile matrix. In the simulation there is no requirement to use
a blazed phase profile, since there is no unmodulated light after the interaction with
the phase modulation profile. As a result, we used phase profiles like those shown in
Fig. 3.8 for the conversion.

Subsequent to the interaction of the input LG00 beam with the phase modulation
profile, the resulting field was propagated a distance of 3 m using a fast-Fourier
transform (FFT) code developed successively by Vinet, Schilling and Freise. The
details of this FFT code are described in [25]. The final field intensity and phase were
then plotted and compared to the field amplitude of an ideal LG33 mode in Fig. 3.11.

http://dx.doi.org/10.1007/978-3-319-01375-6_4
http://dx.doi.org/10.1007/978-3-319-01375-6_4
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Fig. 3.11 Intensity (top) and phase (bottom) profiles of an ideal helical LG33 mode (left) and a
helical LG33 mode generated by interaction of a LG00 mode with the phase modulation profile
shown in Fig. 3.8 (right)

The upper panels of Fig. 3.11 show that the intensity profile converted LG33 beam
does share some features with that of the ideal LG33 mode; the 4 concentric rings
are clearly visible. However, it is also clear that the outer rings are not as bright for
the converted mode as in the ideal case. The phase profiles in the lower panel of
Fig. 3.11 also show strong similarities between the ideal and converted mode; the
three phase spirals and three radial phase dislocations are visible in both. However,
the converted mode shows higher spatial frequency ‘ripple’ like features in the phase
profile which are not present in the ideal mode. Plots of the amplitude and intensity
of both LG33 fields for a cross section through the optic axis can be seen in Fig. 3.12.
The intensity cross section highlights the fact that the outer rings of the converted
mode are less bright than the ideal mode. This feature is likely to be a result of
the inhomogeneous intensity distribution of the input LG00 mode over the phase
modulation profile, resulting in lower light amplitudes interacting with the outer
regions of the profile. This can be improved by employing the amplitude contouring
technique described in Sect. 3.2.2.
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Fig. 3.12 The normalised amplitude (top) and intensity (bottom) for cross sections through the
optic axis of the simulated converted LG33 beam and the ideal LG33 beam. The amplitude plot
shows higher spatial frequency noise present in the simulated converted beam. It can be seen from
the intensity plot that the outer rings of the simulated converted beam contain a lower proportion
of the beam power than in the ideal LG33 beam case

3.2.4 Converted Beam Parameter Estimation

A useful figure of merit for the performance of a phase modulation profile is the purity
of the generated LG mode after interaction with the phase modulation profile. We
calculate the mode purity as the squared inner product of the normalised converted
LG33 field amplitude and the ideal LG33 field amplitude. This gives a measure of
the fraction of power in the converted field which is in the correct mode. This power
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fraction is referred to as the mode purity in [18] and [26], and so the same definition
is used in this work.

When performing the inner product the beam parameters of the ideal mode used
as the reference will affect the outcome, since even for two ideal modes, different
beam sizes or curvatures will give a lower purity result than 100 %. Choosing the
beam parameters of the ideal LG33 mode in the inner product amounts to choosing a
basis for the modal description (see Sect. 2.5). In order to calculate the true purity of
the converted mode, one is required to choose the basis in which the inner product
between the two fields is maximal.

For this reason it was necessary to investigate the effect of the phase modulation
profile on the waist size and position parameters, w0 and z0 of the beam interacting
with it. Without a proper understanding of the change of these beam parameters upon
conversion, it would not be possible to choose the correct beam parameters for the
ideal LG33 mode in the calculation of mode purity, and the result of the inner product
would give an underestimate for the purity of the converted mode. In this section
we extend the mode conversion procedure analysis to include the possibility that
the phase modulating surface is not located at the input beam waist position. The
phase modulation profile is still designed with no phase curvature term however, as
in Eqs. 3.2 and 3.3.

We expected that the dimensions of the phase modulation profile primarily determine
the beam size of the output beam, but that the beam phase front curvature is unchanged
during interaction with the phase modulating surface. The expectation that the phase
modulation profile determines the beam size stems from the fact that it is this profile
that determines where the nodes in intensity of the converted field are positioned. For
a higher-order LG33 mode, it seems clear that the spacing of the radial rings is one of
the main indicators of the beam size parameter. Our expectation that the phase front
radius of curvature remains unchanged simply stems from the fact that we could see
no physical reason why this curvature should change upon interaction with the phase
modulating surface in the absence of any curvature inherent in the surface itself.

The expected resulting beam waist size w0 and position z after interaction with the
phase modulation profile can be calculated for any set of input beam parameters.
We can rearrange the well known relations for Gaussian beams to give the more
fundamental beam parameters w0 and z as functions of the known beam radius
curvature RC and beam spot size w parameters. Starting with the equation for beam
radius of curvature as a function of position along the optical axis z and the Rayleigh
range of the beam zR [27]

RC (z) = z +
(

zR
2

z

)

, (3.4)

we rearrange to get
zR

2 + z2 = RC (z) z. (3.5)

http://dx.doi.org/10.1007/978-3-319-01375-6_2
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The equation for the beam spot size w(z) in terms of the beam waist size w0, the
Rayleigh range and the distance to the beam waist is

w(z) = w0

√

1 + z2

zR
2 . (3.6)

The Rayleigh range is related to the beam waist size and the wavelength by the
following equation;

zR = w0
2π

λ
(3.7)

Rearranging this gives

w0 =
√

zRλ

π
. (3.8)

Substituting this expression for w0 into Eq. 3.6 gives

w(z) =
√

zRλ

π

(

1 + z2

zR
2

)

=
√

λ

π

(

zR + z2

zR

)

. (3.9)

Squaring both sides, multiplying through by zR and rearranging gives

z2
R + z2 = zR w(z)2π

λ
. (3.10)

Now we can substitute the expression for z2
R + z2 from Eq. 3.5 to obtain

RC (z) z = zR w(z)2π

λ
. (3.11)

Rearranging for z, squaring both sides and substituting the result for z2
R acquired

from Eq. 3.5 gives

z2 = (RC (z) z − z2)(w(z)2π)2

(RC (z)λ)2 . (3.12)

Collecting z2 terms on one side of the equation gives

z2

(

1 +
(

w(z)2π

RC (z)λ

)2
)

= z (w(z)2π)2

RC (z)λ2 . (3.13)

Now dividing both sides by z, rearranging for z and tidying a bit gives
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z =
(

w(z)2π
λ

)2
RC (z)

RC (z)2 +
(

w(z)2π
λ

)2 . (3.14)

If we define the parameter ϒ(z) as follows

ϒ(z) =
(

w(z)2π

λ

)2

(3.15)

we can write Eq. 3.14 in a more visibly intuitive manner;

z = ϒ(z) RC (z)

RC (z)2 + ϒ(z)
. (3.16)

The beam waist size can now be found in terms of the radius of curvature and beam
spot size at a given point along the x-axis and the distance to the beam waist, or even
in terms only of the radius of curvature and beam spot size at a given point along the
x-axis. Starting by substituting the result for z from Eq. 3.14 into Eq. 3.5 we get

z2
R = RC (z)2ϒ(z)

RC (z)2 + ϒ(z)
− RC (z)2ϒ(z)2

(

RC (z)2 + ϒ(z)
)2 . (3.17)

Factorising the right hand side gives

z2
R = RC (z)2ϒ(z)

RC (z)2 + ϒ(z)

(

1 − ϒ(z)

RC (z)2 − ϒ(z)

)

. (3.18)

Substituting for zR from Eq. 3.7 dividing both sides by
(

π
λ

)2 and taking the fourth
root of both sides gives

w0 =
[

RC (z)2 w(z)4

RC (z)2 + ϒ(z)

(

1 − ϒ(z)

RC (z)2 + ϒ(z)

)] 1
4

. (3.19)

The expression for z and w0 can be simplified further, and are given here in their
final form;

z = Rc
(

λRc
w2π

)2 + 1
(3.20)

w0 = w2

1 + w4π2

R2
c λ2

[

1 −
(

R2
c

λ
+ 1

)−1
] 1

4

. (3.21)



62 3 Simulation Study into LG33 Mode Interferometry and Production

The accuracy of predictions based on our expectations about the beam parameter
change upon mode conversion by was tested comparing the calculated beam para-
meters with FFT simulation results. In the simulation, the converted beam parameters
were estimated by fitting the beam parameters of the ideal LG33 mode such as to
maximise the overlap integral between the converted beam and the ideal LG33 beam.
The ideal LG33 parameters which give the best mode purity result for the converted
beam, calculated in the manner previously described, are the best approximation to
the beam parameters of the converted beam itself. This procedure was performed for
a range of different input beam waist sizes and curvatures, and then compared with
the calculated theoretical beam parameters.

Figure 3.13 shows the theoretical results for generated beam waist size and position
compared to the numerical results from the simulation. For each of the 10 different
input beam waist sizes and each of the 10 different beam waist positions investigated
numerically, the theoretical and numerical results agree very well. We therefore
conclude that our aforementioned theory is sound for the purposes of estimating
post-conversion beam parameters.

3.2.5 Optimum Conversion Beam Size Ratio

Since the beam waist size w0 appears in the phase cross section Eqs. 3.3 and 3.2, it
is clear that a given phase modulation profile will be optimized to give a particular
output LG33 beam size. However, since the higher-order LG modes are more spatially
extended than the LG00 mode, one expects that the incident LG00 beam should have
a larger beam size in order to actually interact optimally with the phase modulation
profile. We therefore performed a study using FFT simulations to find the optimum
ratio of input LG00 beam size to phase image beam size for a range of different LGpl

modes.

Figure 3.14 shows the results of this investigation for conversion to the helical LG33
mode, where the conversion procedure was simulated for the same input beam size,
but each time with a different phase image size. The phase modulating surface was
always located at the beam waist for simplicity. In this case the optimum ratio of
input beam size to converted beam size was found to be around 3. Table 3.3 shows
this optimum ratio for generating all LGpl beams up to and including order 9.

3.2.6 Theoretical Purities of Generated LG Modes

The squared inner product of the normalised phaseplate generated LG33 field ampli-
tude and ideal LG33 field amplitude gives a measure of the amount of power in the
phaseplate generated field which is in the correct mode, a figure of merit known as
the mode purity [18, 26]. For the helical LG33 mode conversion simulation, 74.16 %
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Fig. 3.13 Plotted in the upper panel are the waist sizes of the best-fit ideal LG33 mode for a simulated
phase-plate generated LG33 beam for ten different input LG00 beam curvatures. For comparison,
the theoretical prediction for the waist size of the generated LG33 mode is also plotted. The best-fit
and theoretical waist positions are similarly plotted in the lower panel. A clear agreement between
the best-fit results and the theoretical trend is observed in both plots

of the power in the converted LG33 field was in the LG33 mode. The same simulation
was performed for the sinusoidal LG33 mode conversion, in which we found that
60.13 % of the power was in the correct mode.

We believed that some of the power remained in other modes as a result of the
limitation of phase only modulation. To test whether or not this was the case we
added an amplitude modulating ‘mask’ to the simulation, at the same position as the
phase modulating surface. The profile of the mask was based on the ideas described in
Sect. 3.2.2, in the context of contoured blazing for amplitude modulation. Figure 3.15
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Fig. 3.14 Simulated converted LG33 mode purity as a function of the ratio between input LG00
beam size and LG33 phase modulation profile beam size. The maximum mode purity is achieved
when the input beam size is around a factor of 3 larger than the phase modulation profile beam size

Table 3.3 Optimum ratio between input LG00 beam size and LGpl phase image beam size, for LG
modes up to the order 9

4 2.9 3.0

3 2.5 2.7 2.8 3.0
2 2.2 2.4 2.5 2.7 2.9 3.0
1 1.7 2.0 2.2 2.4 2.6 2.8 2.9 3.1
0 1.0 1.4 1.7 2.0 2.2 2.5 2.6 2.8 3.0 3.2
p
l 0 1 2 3 4 5 6 7 8 9

Fig. 3.15 Amplitude transmission masks for the sinusoidal (left) and helical (right) LG33 modes,
as used in simulations of the beam conversion procedure
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shows the transmission profile mask for both the helical and sinusoidal cases. The
amplitude transmission profiles were calculated simply by dividing the normalised
amplitude profile of the LG33 beam to be generated by the normalised amplitude
profile of the incident LG00 beam.

Using these amplitude masks, the converted beam purity was now found to be 100 %
in both helical and sinusoidal cases. This confirmed our belief that the limitation of
phase only modulation was responsible for the beam power not converted into the
LG33 mode. It also showed that it should theoretically be possible to achieve 100 %
purity in the converted mode if both phase and amplitude modulation are applied. In
reality however, technical limitations in the equipment mean that such high purities
are unlikely to be achievable directly from a phase and amplitude modulator, or a
phase modulator used with a contoured blazing profile, in the laboratory.
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Chapter 4
Tabletop Demonstrations of LG Mode
Production and Cleaning

With an improved understanding of the principles of mode conversion using a phase
modulating surface, we proceeded with experimental table-top demonstrations of
LG mode generation and interferometry. For the table-top experiments, we decided
to use a computer-controlled liquid-crystal-on-silicon spatial light modulator (LCoS
SLM) for preparing the LG beams. We found this to be the best choice for our
work because of the availability and adaptability of such devices. We could easily
alter the phase profile imprinted on the beam to be converted, and thus try many
different profiles for conversion. At this relatively early stage in the experimental
investigations, this advantage was deemed to outweigh the disadvantages of the
SLM generation method; namely low mode conversion efficiency and phase front
stability. Although, for example an etched diffractive optic would offer better stability
and conversion efficiency, there is no possibility to alter the design once the optic
is manufactured. At this time our goal was not to find the optimal the conversion
method, but rather to investigate the interferometric performance of LG33 beams.

In this chapter I will first describe the procedure used to determine the phase modu-
lation characteristics of the SLM for 1064 nm light, and then describe the results we
obtained using the SLM to generate higher-order LG modes. The rest of the chapter
describes the experiments we performed with the helical and sinusoidal modes that
were generated, aimed at verifying some of the results of the simulation study de-
scribed in Sect. 3.1. As part of this work, we demonstrated the first feedback control
of an optical cavity pumped with a higher-order LG mode, and showed that the LG33
mode transmitted through the cavity on resonance had a strongly enhanced mode
purity when compared with the input mode. These results, along with our demon-
stration of the incompatibility of helical LG modes with triangular cavities, were
published in [1].

P. Fulda, Precision Interferometry in a New Shape, Springer Theses, 67
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4.1 Characterising the Spatial Light Modulator

For initial table-top experiments with higher-order LG modes, our method of choice
for generating the modes was to use a SLM. The SLM we used was a Holoeye LCR-
2500 liquid-crystal on silicon reflective type [2] model, with a 1024×768 resolution
on a 14.6×19.6 mm active area. Figure 4.1 shows the SLM set up on the optical table.

Before using the SLM for the generation of higher-order LG modes, it was necessary
to characterise the device. Many of the device’s specifications were provided by the
manufacturer, but the modulation index for 1064 nm light is not given, since the
device was primarily designed for wavelengths in the range from 400 to 700 nm.
The device is operated remotely by PC via a DVI connection; a very convenient
method as the SLM can be addressed by the PC in exactly the same way as a second
monitor. The desired phase profile is transmitted via DVI cable to the SLM control
box as a greyscale image. The control box converts the greyscale values for each pixel
in the image to a specific voltage value, which is then applied to the corresponding
pixel on the phase modulating optical component of the SLM, referred to as the SLM
head or display. The phase modulation depth of pixels within the SLM display is
determined by the voltage, and thus the SLM displays the phase profile supplied in
the original image from the PC.

For most uses of SLMs it is necessary to use a look up table to convert accurately
from greyscale values to the driving voltage which it applies to the liquid crystal cells

Fig. 4.1 The Holoeye LCR-2500 liquid crystal on silicon spatial light modulator device. The control
box is provided with the desired phase modulation profile by a PC, via a DVI cable. The modulating
surface of the SLM is mounted in a 3-axis kinematic mount, and connected to the control box by
the orange ribbon cable
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in order to achieve the desired phase modulation. The data from such a table is often
referred to as a ‘gamma curve’, because of its analogous function to the gamma
correction used in image processing. In the absence of manufacturer data for the
gamma curve at 1064 nm, it was necessary to ascertain it by means of measurement
in the lab. Several methods for characterising the phase modulation properties of
SLMs have been reported in the literature previously, such as in [3] and [4]. We
decided to use a method similar to that used in [4], as it seemed the more straight-
forward of the two methods and we did not expect to require the full pixel-by-pixel
characterisation obtained from the other method.

The setup for measuring the phase modulation characteristics of the SLM is shown
in Fig. 4.2. An expanded beam is used as the readout beam for a Michelson inter-
ferometer, where one of the end mirrors is formed by the reflective surface of the
SLM. Horizontal interference fringes were formed at the anti-symmetric port by
misaligning the arms along the vertical axis. The relative position of the bright and
dark fringes is dependent on the phase difference between light from the two arms
of the interferometer. By changing the greyscale value applied to one half of the
SLM, we can observe the change in the relative position of the fringe pattern which
corresponds to light reflected from that half of the SLM, and recover the phase modu-
lation depth that this light experiences on reflection from the SLM. The fringe pattern
corresponding to the unmodulated half of the SLM serves as a reference, and avoids
false interpretation of drifts of the Michelson as phase changes caused by the SLM.

Fig. 4.2 The optical layout for characterising the SLM. A simple Michelson design is used with
an expanded beam, where the SLM forms one of the end mirrors. The arms are misaligned in the
vertical axis to produce a horizontal fringe pattern at the anti-symmetric port. The greyscale value
applied to one half of the SLM is then varied, while the other half remains constant. The fringe
pattern is recorded using a CCD camera, and the data are subsequently processed to recover the
phase modulation depth at each greyscale value
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Fig. 4.3 The measured fringe
pattern from the setup shown
in Fig. 4.2, when a greyscale
level of 200 was applied to
one half of the SLM. The right
hand side of the fringe pattern
is the side which corresponds
to light reflected from the
modulated half of the SLM

The fringe pattern at the anti-symmetric port was recorded for 27 different grayscale
levels applied to one half of the SLM only, using a CCD camera. An example of
one such image is shown in Fig. 4.3. From each such image, one column of pixels
was then selected for each of the modulated and unmodulated side of the beam. The
intensity variation over these columns was then fitted via a sinusoidal function with
a Gaussian envelope:

I (x) = A exp(−x2/σ2)[sin(ωx + φ) + C]. (4.1)

The difference between the fitted phase φ of the SLM modulated and unmodulated
sides of the fringe pattern was then calculated. Once any initial phase offset between
the two sides of the fringe pattern is subtracted off, this phase difference gives the
phase modulation of the SLM for that particular greyscale value. An example of the
fits for the left and right sides of the CCD data shown in Fig. 4.3 can be seen in
Fig. 4.4.

A plot of the recovered phase modulation as a function of applied greyscale level is
shown in Fig. 4.5. It is clear from this plot that the SLM is not capable of producing
a 2π phase modulation in light reflected from its surface. In fact, the maximum
achievable modulation is around 2.3 radians. This makes the use of the SLM sub-
optimal for generating higher-order LG modes, for two main reasons; Firstly, it is
not possible to achieve the optimal diffraction efficiency into the first order from
the blazed phase grating profile with a phase depth of less than 2π. Secondly, one
expects that since the generated phase profile is required to cycle from 0 to 2π a total
of l times over the azimuthal coordinate to produce a LGpl mode (see Sect. 3.2.2),

http://dx.doi.org/10.1007/978-3-319-01375-6_3
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Fig. 4.4 Results of fitting Eq. 4.1 to the data from columns of pixels from the left and right sides
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Fig. 4.5 Measured phase modulation from the LCR-2500 SLM as a function of applied greyscale
value. Aside from the one anomalous point, the plot shows a similar trend to those of the manufacturer
provided ‘gamma curves’ for shorter wavelengths. The main difference for the 1064 nm case is that
the maximum phase modulation depth is less than π, as opposed to the 2π for which the device is
rated up to 700 nm wavelengths

a modulation depth less than 2π should be insufficient to generate such modes. In
practice, however, we found that the SLM was capable of producing the helical
phase front of higher-order LG modes when used in the first order blazed grating
configuration.
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4.2 Higher-Order LG Modes Generated Using a Spatial Light
Modulator

Presented in this section are the method and results of the table-top LG mode genera-
tion procedure. The SLM was used in the configuration shown in Fig. 4.6 to generate
a range of both helical and sinusoidal LG modes. In this section I will discuss the
recorded intensity profiles of the LGpl beams generated in this way, as well as in-
terferometric measurements made in order to probe the actual phase profile of the
generated beams. Also discussed in this section is the effect of the blazing angle
added to the LG mode conversion profile, as discussed in Sect. 3.2.2, on the diffrac-
tion pattern obtained.

The estimation of mode purities achieved with this conversion method required the
use of a more complicated setup involving a linear mode cleaner. Since this procedure
was intimately related to the experimental investigation of the interferometric per-
formance of higher-order LG modes, I present the procedure and the results obtained
later in Sect. 4.3.3.

4.2.1 Mode Conversion Results

The SLM was used in the experimental setup as shown in Fig. 4.6 to perform conver-
sions from the LG00 mode to a number of higher-order LG modes. The LG00 beam
was steered onto the SLM under an angle close to the SLM surface normal. It is
important that the incident beam is as close to the SLM surface normal as possible,
since under non-zero incident angles the projection of the LG00 beam onto the SLM
surface will cause ellipticity in the diffracted beam. A blazing angle of 0.083◦ was
added to the basic phase modulation profiles in order to spatially separate the unmod-
ulated light from the modulated light. The input LG00 beam size at the SLM display
was measured to be 1.26 mm, and the beam size ratios from Table. 3.3 obtained from

Fig. 4.6 Initial setup for generating and observing LG modes with the SLM

http://dx.doi.org/10.1007/978-3-319-01375-6_3
http://dx.doi.org/10.1007/978-3-319-01375-6_3
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the simulation study were used to scale the phase modulation profile appropriately
for the generation of different higher-order LG modes.

Figure 4.7 shows the helical modes up to LG33 that were generated in this way. The
lower and upper panels show the modes generated using phase images that respec-
tively did, and did not include the amplitude modulation described in Sect. 3.2.2.
The intensity profiles shown in Fig. 4.7 show a good resemblance to the theoretical
intensity profiles for LG modes shown in Fig. 2.5. Comparing the amplitude mod-
ulated and unmodulated cases, we can see that diffraction rings are visible outside
the last ring of the LG beam for many of the modes in the amplitude unmodulated
case, but are not visible for the amplitude modulated case. However, we can observe
ripple-like interference fringes on the right side of the beams in the amplitude mod-
ulated case. This is due to the influence of the zero order beam, which was had a
greater effect in the amplitude modulated case because the LG beam powers were
significantly lower.

The diffraction efficiencies for both the amplitude modulated and unmodulated cases
were measured by comparing the light power incident on the SLM to the light power
present in the 1st diffraction order. This measurement was made when the SLM was
displaying the phase profile for conversion to the LG33 mode. For the sinusoidal LG33,
the non-amplitude contoured diffraction efficiency was 16.4 %, and the amplitude
contoured diffraction efficiency was just 1.83 %. For the helical LG33 case, the non-
amplitude contoured diffraction efficiency was 15.56 %, and the amplitude contoured
diffraction efficiency was 3.81 %.

All of these diffraction efficiencies are very low for a blazed grating profile. The
low efficiency in the non-amplitude modulated case is likely to be mainly a result
of the limited phase modulation depth of less than π, as well as the loss of light
from the first diffraction order due to direct reflection from the front surface of the
SLM display. Diffraction caused by the grating-like structure of the pixels in the
SLM display itself may also account for some of the low efficiency into the desired
mode. The amplitude-contouring also clearly has a strongly negative impact on the
diffraction efficiency. This may again be a result of the limited phase modulation
depth. The benefits of amplitude contouring in terms of generated mode purity and
the drawbacks in terms of diffraction efficiency are shown in Table. 4.3 and discussed
later in Sect. 4.3.3 of this chapter.

It is difficult to determine the purity of the modes just from the intensity profile.
In order to accurately measure the mode purity, it is necessary to have access to the
field amplitude profile, as in the simulation investigation in Sect. 3.2.3. In practice, the
field amplitude is very difficult to measure accurately, as it requires an interferometric
measurement against a reference plane wave.

For this reason our best estimates of the mode purities achieved with our SLM
generation method were obtained using a different method involving a comparison
with a numerical model. This analysis is described in Sect. 4.3.3. We did however
find it informative to observe the phase profiles of the generated LG modes with an

http://dx.doi.org/10.1007/978-3-319-01375-6_3
http://dx.doi.org/10.1007/978-3-319-01375-6_2
http://dx.doi.org/10.1007/978-3-319-01375-6_3
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Fig. 4.7 Helical LG modes up
to LG33, as generated using the
LCR-2500 SLM without (top)
and with (bottom) amplitude
contouring

interferometric measurement, in order to get a qualitative picture of the quality of
LG modes that we could produce with the SLM.

Figure 4.8 shows the experimental setup for measuring the interference between the
SLM generated LG modes and a LG00 beam. In a similar way to the setup shown
in Fig. 4.2, the SLM is used as one end mirror in a Michelson interferometer. In
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Fig. 4.8 The setup for measuring the interference between SLM generated LG modes and the
LG00 mode. The end mirror of one arm of a Michelson interferometer is formed by the SLM, which
displays the phase profile for converting to a given LGpl mode. The beam reflected directly from
the SLM is dumped, and the 1st diffraction order, which contains the generated LGpl beam, is
aligned to interfere with the beam from the other Michelson arm. The resulting interference pattern
is recorded with the CCD camera

this experiment however, the SLM displays the LG mode conversion phase profile.
The Michelson is aligned such that beam from the arm with a normal end mirror
overlaps with the first diffraction order from the SLM, into which the desired LG
beam is diffracted by the overlaid blazed grating. The resulting interference pattern
is recorded with a CCD camera at the anti-symmetric port of the Michelson.

The lower-left panel of Fig. 3.11 shows the phase front of an ideal LG33 mode with
some residual curvature. In this case, contours of constant phase follow a spiral
pattern. We therefore expect the interference pattern between such a mode and a
plane wave to have a similar spiral pattern. The exact pattern will depend on the
relative path length difference between the arms, or ‘Michelson tuning’, but the
main features of the pattern should remain visible at any tuning.

The top row of images in Fig. 4.9 shows the measured intensity patterns at the anti-
symmetric Michelson port when the SLM was displaying the phase profile for con-
verting to helical LG22, LG33, LG44, and LG55 modes. The striking feature of each
of these images is the spiral pattern, each with a number of spiral arms equal to the
azimuthal l index of the LG mode being observed. This spiral pattern is an expected
consequence of the interference between the helical LG mode, with its spiral phase
front, and the LG00 mode with its spherical phase front, provided that there is some
residual curvature difference between the two phase fronts. The lower row of images
in Fig. 4.9 show the results of simulations in which ideal LGpl modes were interfered
with a LG00 mode, with some residual curvature present between the two modes in
each case. The main features of the intensity patterns are common between the mea-

http://dx.doi.org/10.1007/978-3-319-01375-6_3
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Fig. 4.9 The upper row shows measured interferograms of the SLM generated higher order LG
modes with a LG00 mode. From left to right; LG22, LG33, LG44 and LG55. The spiral structure in
the interferogram indicates the presence of a spiral phase profile in the LG beam. The lower row
shows the results of simulations in which an ideal LGpl mode is interfered with the LG00, with
manually tuned beam parameters

sured and simulated interferograms, indicating that to some extent at least the SLM
generated LG modes have the correct phase profiles.

4.2.2 Blazing Angle Tests

Figure 4.10 shows the results of an investigation into the effects of using different
blazing angles on the SLM phase image. The left column shows the five different
phase profiles used in the investigation. Each phase profile was an amplitude con-
toured profile for converting to a helical LG33 beam. However, each phase profile had
a different blazing period overlaid. The right column shows the measured diffrac-
tion pattern intensity corresponding to the phase profile, inverted to show detail more
clearly. The images shown were obtained using a commercial digital camera focused
on a white surface, on which the diffraction pattern from the SLM was incident. This
measurement technique was necessary in order to observe the light intensity over a
large horizontal range.

The darkest region of each measured diffraction pattern corresponds to the zeroth
diffraction order, containing the light which is unmodulated by the SLM. The LG33
mode shape is diffracted into the first diffraction order. Comparing the five different
diffraction patterns, we can see that as expected the diffraction angle, and hence
separation of the diffraction orders at the measurement point, increases as the blazing
period is reduced.
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Fig. 4.10 Phase modulation profiles and the corresponding diffraction patterns. The plots a to e
use the same phase plate to create a helical LG33 mode but are created with different groove width
for the blazing: a 2.123 px, b 3.7302 px, c 5.302 px, d 10.302 px and e 15.302 px. The images are
inverted to show the detail more clearly

The multiplicative effect on the effective modulation depth with higher diffraction
orders described in for example [5] can also be seen in Fig. 4.10. The faint second
diffraction order appears as a single annular intensity pattern. This would be expected
if the modulation depth was 4π in this order, since the radial phase jumps which
correspond to π in the first diffraction order would appear as 2π jumps in the second
order, which is equivalent to no jump at all. The 3 helical phase vortices in the first
order should appear as 6 vortices in the second order, hence the dominant mode in
the second diffraction order should be the LG06 if the target beam in the first order
is LG33.

4.3 Mode Cleaning Higher-Order LG Modes

One of the main goals of the table-top experiments with higher-order LG modes
was to verify the compatibility of the LG33 mode with the PDH longitudinal cavity
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control scheme. The simulation study described in Sect. 3.1. had shown that the PDH
scheme should work in exactly the same way for the LG33 mode as for the LG00
mode, but it was still a crucial step to verify this experimentally. The task at hand
was therefore to demonstrate the feedback control of an optical cavity pumped with
the LG33 mode using the PDH method. At this point we recognised the opportunity
to achieve two objectives with one experiment, by simultaneously investigating the
mode cleaning effect of an optical cavity on the SLM generated LG33 beams. As well
as demonstrating the compatibility of the LG33 mode with a crucial interferometric
technique, we could also show that the mode cleaner effect can be used to create
extremely pure LG33 modes, even from relatively low purity SLM generated LG33
beams.

In this section I first give an introduction to the mode cleaner effect and its use in
current gravitational wave interferometers. I will then describe the design and char-
acterisation of two different mode cleaner cavities that were used in our investigation.
Finally I will describe the experiment performed with the LG33 mode in a linear mode
cleaner cavity, demonstrating the feedback control of the cavity and the increase in
purity of the LG33 beam upon transmission through the cavity.

4.3.1 The Mode Cleaner Effect

The mode cleaner effect arises from the different round trip Gouy phase accrued by
different mode orders [6] in an optical cavity. The different amounts of Gouy phase
accrued by different mode orders can be seen in the phase factor exp(i�(n + m + 1))

in Eq. 2.13, and exp(i�(2p + l + 1)) in Eqs. 2.14 and 2.15. Any given eigenmode of
a cavity experiences the mode order1 plus one times the fundamental mode round trip
Gouy phase, �RT. This round trip phase difference between different mode orders
can be taken advantage of in order to separate unwanted ‘parasitic’ modes from the
desired mode; an optical cavity can be designed such that when resonant for the
desired mode, is it non-resonant for the unwanted modes. In this way, a cavity can
‘clean’ out unwanted modes from the beam it is pumped with [7], hence the name
mode cleaner.

The round trip Gouy phase �RT is a function of the cavity length and the eigenmode
Rayleigh range given by

�RT = 2 arctan

(
L

zR

)

. (4.2)

For the simple case of a plane-concave cavity, the cavity Rayleigh range zR is given
by

zR = √

L(Rc − L), (4.3)

1 n + m for HG modes or 2p + l for LG modes

http://dx.doi.org/10.1007/978-3-319-01375-6_3
http://dx.doi.org/10.1007/978-3-319-01375-6_2
http://dx.doi.org/10.1007/978-3-319-01375-6_2
http://dx.doi.org/10.1007/978-3-319-01375-6_2
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where L is the cavity length and Rc is the radius of curvature of the concave mirror.
This leads to the simple expression for the round trip Gouy phase for a plane-concave
cavity:

�RT = 2 arctan

⎛

⎝
1

√
Rc
L − 1

⎞

⎠ . (4.4)

A well designed mode cleaner should be designed such that the length and mirror
curvatures give a large round trip Gouy phase difference between adjacent mode
orders. This ensures that while the desired mode is resonant, parasitic modes which
are close by in terms of mode order will be strongly suppressed in the cavity. Care
should also be taken to ensure that the round trip Gouy phase is not close to being a
low integer fraction of 2π, i.e. that

�RT �= 2π

n
, (n = 1, 2, 3 . . .) (4.5)

to avoid degeneracy with higher FSR resonances of modes different in order by n
from the desired mode.
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Fig. 4.11 Results of a Finesse simulation for a mode cleaner cavity, showing transmitted power
as a function of cavity length tuning for an input beam of 10 W, distributed evenly between 10 HG
modes of different orders. The round-trip Gouy phase difference between the different mode orders
separates their resonant peaks
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Figure 4.11 shows the results of a numerical simulation performed using Finesse [8],
of a plane-concave linear mode cleaner cavity of length 21 cm, and with the concave
end mirror with radius of curvature 1 m. Putting these values for cavity length and end
mirror curvature into Eq. 4.4 gives a result for the round trip Gouy phase of �RT =
54.55◦. Comparing with Fig. 4.11, we can see that the resonances of successive mode
orders are separated in cavity length by half of the round trip Gouy phase difference;
27.27◦, as expected. The factor of two discrepancy arises from the fact that the extra
optical path length associated with a cavity detuning is experienced twice during one
round trip.

Mode cleaners are used in several locations in gravitational wave interferometers [9].
So-called pre-mode cleaners are used as stable references in the initial frequency
stabilisation chain of the laser. These typically employ small, monolithic spacers in
air. The beam then passes through the input mode cleaner;2 a suspended optical cavity
in vacuum. The main function of the input mode cleaner is to filter out beam geometry
fluctuations (also called beam-jitter noise). If we recall that alignment fluctuations can
be described by the addition of higher-order HG modes (see Sect. 2.4), it is clear that
by suppressing the amplitude of higher-order HG modes the alignment fluctuations
in the beam transmitted through the input mode cleaner can be suppressed.

Most gravitational wave interferometers also include optical cavities in the main
interferometer, which act as additional mode cleaning cavities. Often a small in-
vacuum output mode cleaner is also used to filter the spatial properties of the light
leaving the interferometer before it reaches the photodetectors. Since mode cleaner
cavities are so prevalent in gravitational interferometers, it is important to investigate
their compatibility with the LG33 mode.

Currently a triangular arrangement is favored for the mode cleaners in gravitational
wave detectors as it gives a spatial separation between the injected beam from the
reflected beam, enabling a length control error signal to be measured in reflection
without the need for polarising optics. However, triangular cavities are not ideal for
use with higher-order helical LG modes, for reasons demonstrated in Sect. 4.4. As a
result of these considerations, the main experimental setup described here makes use
of a linear mode cleaner cavity instead of a triangular cavity. The finesse of the linear
cavity was chosen to be low in comparison with some gravitational wave detector
input mode cleaners, as shown in Table. 4.1. While higher finesse cavities can give
a stronger suppression of misalignment modes, it was interesting for us to see the
large improvement that can already be gained through the use of a low-finesse mode
cleaner.

2 Or in the case of the GEO600 detector, two input mode cleaners.

http://dx.doi.org/10.1007/978-3-319-01375-6_2
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Table 4.1 Cavity parameters for some gravitational wave detector input mode cleaners, as well as
for cavities used in this work. TEM01 suppression factors and throughput percentages are given in
terms of light power. The finesse and TEM01 suppression factors of the mode cleaners used in this
work were chosen to be lower than those of the large-scale mode cleaners

Mode cleaner Finesse FSR (MHz) TEM01 Throughput (%)
suppression

GEO MC1 [10] 2700 37.48 1325 80
GEO MC2 [10] 1900 37.12 937 72
Virgo IMC [11] 1181 1.044 NA 86.6
aLIGO IMC [12] 500 17.96 NA NA
Linear MC 172 714 50.1 63
Triangular MC 307 714 87.6 99

Fig. 4.12 The linear mode cleaner cavity used in the LG mode cleaning experiment. The cavity
mirrors are clamped to a rigid aluminium spacer

4.3.2 Design and Characterisation of the Triangular and Linear
Mode Cleaners

For improving the purity of the SLM generated LG modes, we employed a linear
mode cleaner cavity (LMC) consisting of two mirrors; one flat and one concave, as
shown in Fig. 4.12. We also used a triangular mode cleaner cavity (TMC) consisting
of two flat mirrors and one curved mirror to test the predictions about the interaction
of LG modes with three mirror cavities. The design of the TMC was based on the
design described in [13], and is summarised along with the linear mode cleaner
design in Table. 4.1.
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It was necessary to measure the finesse of the mode cleaner cavities, in order that their
interaction with LG modes could be well understood and compared with simulations.
Here I will only describe the process of measuring the finesse of the triangular cavity,
since the same method was used to measure the finesse of the linear cavity. Our
method for measuring the finesse was to perform scans of the cavity by applying a
triangular wave ‘ramp’ signal to the PZT attached to one of the cavity mirrors, and
recording the transmitted light power through the cavity with a photodiode. With the
recorded cavity response, we could then fit a theoretical model to the data and thus
estimate the finesse. We found, however, that the PZT response was not sufficiently
linear over the range of a full cavity FSR to provide a reliably linear x-axis for the
scan. Some extra steps were therefore required in order to make an accurate estimate
of the finesse.

First of all, the cavity was slightly misaligned, in order to induce the presence of
higher-order modes within the cavity. The advantage of this is that the separation
between successive mode orders is a constant, and so the location of each higher-order
mode peak gives an indication of the true x-axis position at that point, unaffected by
the PZT non-linearity. Figure 4.13 shows the data from a scan of the TMC, compared
with the theoretical predictions for the higher-order mode peak locations. It can be
seen that the peak locations do not agree, as a result of the non-linearity of the PZT
response over the scanned range.

The difference in the expected and apparent positions of the higher-order mode peaks
was used to fit a parabolic function for the deviation of the PZT response from linear
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Fig. 4.13 Measured transmitted light power through the TMC as the cavity length was scanned with
the PZT. The theoretically expected higher-order mode positions are labelled with the red dashed
lines. These positions do not match up with the higher-order mode resonances in the measured data,
which were induced by misaligning the cavity input beam
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Fig. 4.14 Calibration curve for the TMC PZT. The red data points show the residuals between the
expected and apparent higher-order mode resonance positions in the plot shown in Fig. 4.13, and
the black curve shows the result of fitting a parabolic function to the data. The parabolic function
was subsequently subtracted from the PZT ramp data in order to linearise the x-axis of the scan
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Fig. 4.15 The TMC scan after compensation for the non-linearity of the PZT. The expected higher-
order mode positions now match the apparent mode positions much more closely

across the scanning range. The results of this fit are shown in Fig. 4.14. With the non-
linearity of the PZT accounted for and the x-axis thereby calibrated, the scan data
and the theoretical peak positions agree much more closely, as shown in Fig. 4.15.



84 4 Tabletop Demonstrations of LG Mode Production and Cleaning

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025

10
−1

10
0

data
F=304.994

3.12 3.125 3.13 3.135 3.14 3.145 3.15 3.155 3.16 3.165

10
−1

10
0

data
F=309.274

0 0.5 1 1.5 2 2.5 3

10
−4

10
−2

10
0

data
F=307.733

Fig. 4.16 The results of a non-linear fit of a model cavity response to the calibrated scan data. The
finesse of the model was adjusted for an optimal match to the data, giving a best-fit finesse of 308.
Separate fits to the two individual LG00 peaks gave results for the finesse that were within 1 % of
the value for the fit of the whole data series

The calibrated data was then compared with a theoretical cavity response function,
and a non-linear fit was made for cavity finesse. Figure 4.16 shows the results of the
fit, over the whole scanning range (top) and in proximity of the two fundamental
mode peaks (bottom). The result of the fit for the whole data series was 308. The
results of the fits to each individual peak were 305 and 309, each exhibiting less than
1 % deviation from the overall fit. The same process was used to estimate the finesse
of the LMC, and gave a result of 172.

4.3.3 Operation of the Linear Mode Cleaner with Higher-Order
LG Modes

Figure 4.17 shows the experimental setup for the investigation into the performance
of the LG33 mode in a linear mode cleaner. The 1064 nm laser light is passed through
an electro-optic modulator (EOM) for the purpose of imprinting 15 MHz phase mod-
ulation sidebands on the light to enable length control of the mode cleaner. The beam
is then passed onto the modulating surface of the SLM, where the phase character-
istics of the desired LG mode are imprinted on the beam. The converted LG beam is
then passed through a telescope to match the beam parameters to the mode cleaner
eigenmode. Figure 4.18 shows a photograph of this experimental setup on the bench
in the laboratory.

The light transmitted through the mode cleaner passes through a beam splitter, and
is analysed at the two ports with a photodiode and CCD camera simultaneously. The
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Fig. 4.17 The experimental setup for mode cleaning a SLM generated higher-order LG beam. The
LG00 input beam is converted to a higher-order LG beam by the SLM. The resulting beam is passed
through a mode-matching telescope into the linear cavity. The transmitted light is used to generate
an error signal which is fed back to the PZT attached to the curved end mirror to control the length
of the cavity. The transmitted beam is simultaneously imaged on the CCD camera

Fig. 4.18 The table-top LG mode conversion and cleaning setup. The laser source is in the upper
right hand corner, the SLM is in the lower left hand corner and the linear mode cleaner is in the top
left hand corner

signal from the photodiode is mixed down with the original 15 MHz local oscillator
signal to generate the length error signal. The error signal across the resonance of
the LG33 mode was observed by injecting a ramp signal onto the Piezo-electric
transducer (PZT) attached to the mode cleaner end mirror in order to scan the length
of the cavity, and then recording the mixer output.
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Fig. 4.19 The blue trace shows the length error signal from the linear cavity, set up as shown in
Fig. 4.17, with a sinusoidal LG33 input beam. The red dashed trace shows the length error signal for
the same optical setup as simulated in the frequency domain simulation software Finesse. While
there are small discrepancies between the two traces, the primary features are identical, as predicted
for a similar setup in [14]

The blue solid line in Fig. 4.19 shows the length error signal recorded for a sinusoidal
LG33 input beam, recorded from the output of the mixer while scanning over the LG33
resonance of the linear mode cleaner. The results of a numerical simulation of the
setup are also shown in Fig. 4.19 as the red dotted line. It can be seen that the measured
error signal is effectively equivalent to the simulated error signal, which itself was
equivalent to the simulated error signal for a LG00 input beam, as was previously
shown for a similar setup in simulations described in Sect. 3.1.

In typical gravitational wave interferometer implementations of mode cleaners the
error signal is taken in reflection, following the Pound-Drever-Hall (PDH) method
[15] . For this work, however, the mode cleaner cavity was of a low enough finesse that
the modulation sidebands were partially transmitted through the cavity. This allowed
us to measure the length error signal in transmission. It also allowed us to measure a
length error signal in reflection from a triangular cavity placed after the LMC in the
PDH method, as described in Sect. 4.4, without the need for another phase modulator
placed after the LMC. We have subsequently demonstrated the equivalent operation
of the LMC with the LG33 mode with a length error signal taken in reflection using
the PDH method, for example in the work described in Sect. 5.3. The LG33 error
signal in both of these cases also showed no difference to the LG00 error signal,
confirming that the PDH longitudinal sensing scheme is equivalent for the LG33
mode and the LG00 mode.

The DC transmitted light level measured by the photodetector was used to aid
in aligning and mode matching the beam to the cavity. Misalignments and mode

http://dx.doi.org/10.1007/978-3-319-01375-6_3
http://dx.doi.org/10.1007/978-3-319-01375-6_5
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Fig. 4.20 The measured intensity patterns of the sinusoidal (left column) and helical (right column)
LG33 beams before (upper row) and after (lower row) transmission through the linear mode cleaner.
The increase in mode purity upon transmission is already evident in the increased symmetry. The
remaining asymmetry apparently is a result of the inaccuracy in the manual alignment of the input
beam to the mode cleaner. This effect is the same for both images but more visually apparent in the
case of the helical mode

mismatches cause coupling to modes of other orders than the injected mode, which
appear in the scan as additional peaks alongside the desired mode order peak, as
shown in Fig. 4.25. The alignment and mode matching lens positions were adjusted
to minimise the amplitude of these other mode order peaks. The alignment and mode
matching of the cavity was more sensitive in the case of the LG33 mode than the LG00
mode, in that a given misalignment or mode mismatch caused a greater amount of
power to be coupled into adjacent mode orders for the LG33 input. While this effect
is partly due to the LG33 beam shape itself, in this case it may also be partly due to
the relatively low purity of the input beam. The power present in other modes in the
input beam due to the imperfect nature of the conversion procedure will show up in
the cavity scan even when the alignment and mode matching are optimal.

We subsequently closed the feedback control loop by connecting the error signal
channel to the PZT via a servo and high-voltage amplifier. The length of the mode
cleaner cavity was thereby controlled or ‘locked’ to maintain the resonance condition
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for the desired mode order. When controlled for the resonance of the LG33 mode, the
cavity remained stable for many hours. Lock acquisition was easy and repeatable with
the setup, and the lock could even be maintained during a change of input beam from
helical to sinusoidal, and vice versa. The stable locking of a cavity to a higher-order
LG mode was a very significant result, since the use of RF modulation/demodulation
control loops are such a fundamental technique in the operation of gravitational wave
interferometers. To our knowledge this was the first time an optical cavity had been
operated with a higher-order LG mode, and we reported this result in [1].

The CCD camera was used to record intensity images of the transmitted beams
while the mode cleaner was controlled to be resonant for the LG33 mode. The input
and output beam intensity distributions for both helical and sinusoidal LG33 beams
are shown in Fig. 4.20. It is clear by inspection that the output modes are more
symmetrical, and have a higher intensity in the innermost bright radial fringe relative
to the others; both features characteristic of LG33 modes. The typical method of
analysing the output mode purity would be to pass the output beam through another
cavity and observe the magnitudes of different mode order resonances [16] . However,
since in this case the performance of the mode in a cavity is itself being investigated,
this method in its original form is not useful for our purposes. In addition, though this
method is suitable for finding the proportion of the light in different mode orders, it
cannot differentiate between different modes of the same order, and therefore cannot
give an estimate for the actual LG33 mode content of the beam.

Instead, we estimated the mode content based on the intensity pattern alone, with
the aid of numerical simulations. The method we used to estimate the mode content
of the transmitted light relies on the fact that the light transmitted through the cavity
can be described as a sum of the eigenmodes of the cavity.3

The first step was to select the optimal basis system for the modal description of the
measured light. A modal decomposition of a light field depends on the coordinate
system used, as demonstrated for the optic axis definition in relation to the HG modes
in Sect. 2.4, and for the beam spot size parameter definition in relation to LG modes
in Sect. 2.5. In order not to underestimate the mode content in the LG33 mode, it was
therefore necessary to choose a coordinate system in which the LG33 mode content
would be maximal. In practice this process took the form of a non-linear fit of an
ideal LG33 mode intensity distribution to the measured intensity data. The fitted
parameters were the coordinates of the optic axis, and the beam spot size. One can
also understand this step as simply a calibration of the CCD.

The next step was to analyse the residuals after subtracting the ideal LG33 intensity
from the measured intensity. These residuals are shown for the sinusoidal LG33
beam in the left two panels of Fig. 4.21. The leftmost panel shows the residual for
the input beam, and the middle panel shows the residual for the transmitted beam.

3 While in fact any beam can be described by a sum of such eigenmodes, this would not be such an
effective way of analysing less pure beams, such as for example the input LG33 beams, since a very
large number of eigenmodes may be required to describe the higher spatial frequency components.

http://dx.doi.org/10.1007/978-3-319-01375-6_2
http://dx.doi.org/10.1007/978-3-319-01375-6_2
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The scale of the residuals is less for the output LG33 beam than for the input beam,
thus already demonstrating an increase in mode purity upon transmission through
the mode cleaner.

For the sinusoidal case, the spatial distribution of the transmitted beam residuals
indicates that the remaining mode impurities may be dominated by the effects of
a misalignment of the injected beam into the mode cleaner. This indication comes
from the fact that the intensity residual closely resembles that of a superposition of
the two modes HG90 and HG18, and the fact that misalignments can be described by
the addition of HG modes (see Sect. 2.4).

Using this information, a model of the mode cleaner setup was developed using
Finesse. In this model, the input beam could be misaligned by varying amounts,
and the transmitted field analysed. We found that it was possible to create a beam
residual intensity which was very similar to the measured pattern when the model
included a misalignment of the input beam of αx = −100 µrad in the horizontal
plane, and αy = 60 µrad in the vertical plane. The residual pattern between the
intensity pattern calculated with the Finesse simulation, and the ideal LG33 mode is
shown in the right hand panel of Fig. 4.21. The result of the simulation shows a very
strong agreement with the experimentally measured data.

With a model that reproduced the measured data so well, we could make some
estimates of the mode content of the measured beam by analysing the mode content
of the model. This was done by separately evaluating the overlap integrals between the
complex field amplitude of the model and the field amplitudes of all LG eigenmodes,
up to the maximum mode order of 12. The reason this could not be done directly
with the measured data is because we do not have access to the field amplitude in
that case; just the intensity.

The results of this eigenmode decomposition for the sinusoidal beam are shown in
Table 4.2. This table shows that we estimate 99 % of the light power to be in LG33
mode, and most of the remaining light power to be distributed in other modes of
order 9. That most of the light power not in the LG33 mode is in other modes of
order 9 is to be expected, since the mode cleaner is not expected to differentiate
between different modes of the same order. A similar analysis for the helical mode
gave effectively the same results for the mode purity.

Since 99 % of the transmitted beam was in a single mode, we could make an accurate
estimate of the input mode purity by simply comparing the amount of power trans-

Table 4.2 Mode decomposition of the numerical model of the sinusoidal LG33 beam transmitted
through the linear mode cleaner, under an input beam misalignment of −100µrad in the horizontal
axis, and 60µrad in the vertical axis. The majority of the beam power is in the desired sinusoidal
LG33 mode, with the rest almost entirely concentrated in other modes of order 9

usin
lp mode 3, 3 4, −1 2, −5 4, 1 2, 5 Other

Power (%) 99 0.4 0.3 0.1 0.1 <10 ppm

http://dx.doi.org/10.1007/978-3-319-01375-6_2
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Fig. 4.21 Residuals from best fits between three intensity patterns and a theoretically ideal sinu-
soidal LG33 intensity profile. Clockwise from top left: the residual for the measured input LG33
beam, the residual for the measured output LG33 beam, the residual for an output LG33 intensity
profile generated with a numerical model including a misalignment of the input beam to the cavity

mitted through the mode cleaner to the amount of power injected into it. Once the
intrinsic losses of the mode cleaner are taken into account, all of the light which was
is not transmitted through the mode cleaner may be assumed to be in unwanted modes
other than the LG33 mode. We estimated the intrinsic losses of the mode cleaner by
injecting a pure LG00 beam into the mode cleaner and measuring the transmitted
power as a fraction of the input power, while the mode cleaner was controlled on
the LG00 resonance. This measurement gave a throughput power efficiency for the
mode cleaner of 63 %. This relatively low efficiency is likely due to the use of poten-
tially lossy ‘off the shelf’ mirrors, and the slightly overcoupled cavity design, which
reduces the maximum transmitted intensity.

After taking the intrinsic optical losses of the mode cleaner cavity into account, we
estimated the input mode purity of the sinusoidal LG33 beam to be 51 %, and 66 % for
the helical LG33 beam. Examples of higher-order LG modes with mode purities likely
to be well above 70% have been created previously directly with SLMs using a more
thoroughly optimized conversion procedure, for example in [3] although in this case
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Table 4.3 Purities of the generated modes before mode cleaning, and efficiencies of the SLM LG33
mode conversion process, for the amplitude contoured and non-contoured cases.

LG33 mode Amplitude contouring Mode purity (%) Conversion efficiency (%)

Helical No 56 8.7
Sinusoidal No 40 6.6
Helical Yes 66 2.5
Sinusoidal Yes 51 1.0

the authors refrain from quoting an experimentally measured purity. However, our
work was the first time a purity improvement of a LG mode using an optical resonator
to an estimated 99 % has been reported in the scientific literature. From the agreement
with the model, we believe the demonstrated mode purity to be limited in first order
by the manual alignment of the input beam. If this is the case, the mode purity can
very likely be improved by using a standard automatic alignment system, such as the
Ward technique described in [17]. Table 4.3 summarises the results for the generated
LG33 mode purities with the amplitude contoured and non-contoured SLM profiles,
as well as the overall conversion efficiencies. We can see that although the amplitude
contouring gives roughly a 20 % increase in the purity of the mode generated, it
comes at the cost of more than a factor of 6 in efficiency for the sinusoidal case, and
a factor of more than 3 for the helical case. It should be noted that these results are
likely to be improved for a SLM which is better optimised for the wavelength used.

It was also possible to lock the mode cleaner to even higher-order LG modes of both
the helical and sinusoidal variety, as shown in Fig. 4.22.

We also measured the interference pattern between a LG33 mode transmitted through
the linear mode cleaner cavity and a LG00 mode, in a similar way to the measurements
shown in Fig. 4.9. The measured interference pattern is shown in Fig. 4.23. The two
superposed beams in the right panel are deliberately misaligned, as this results in a
more intuitively understandable image. The forked interference pattern shows some
similarity to the phase profile used to generate the LG33 mode, as shown in Fig. 3.8.
The number of fork teeth in the central region indicates the l value of the mode being
observed [18] , and the number of dark radial bands as ever indicates the p value of
the mode.

In this section we have demonstrated the feedback control of an optical cavity with
the LG33 mode, as well as even higher-order LG modes, and shown a dramatic
increase in the purity of SLM generated LG33 modes upon transmission through an
optical cavity. We have also estimated the efficiency of the mode conversion process.
Though this efficiency was very low in our experiment, we expect that using a custom
made transmissive diffractive optical element will result in much higher conversion
efficiencies.

http://dx.doi.org/10.1007/978-3-319-01375-6_3
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Fig. 4.22 Higher-order sinusoidal (top row) and helical (bottom row) LG modes transmitted through
the linear mode cleaner. From left to right LG33, LG55 and LG88 modes

Fig. 4.23 The LG33 mode transmitted through a linear mode cleaner (left), and the interference
pattern generated when the mode is superposed with a LG00 mode (right) under an angle

4.4 Helical LG Mode Interaction with a 3-Mirror Cavity

As intimated in Sect. 4.3, we believed that a triangular mode cleaner would not be
compatible with helical LG33 modes. This is primarily due to the fact that after
one full round-trip in a triangular cavity, any beam is reflected 3 times, and is thus
mirrored about the vertical axis. This means that only light fields with symmetry
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Fig. 4.24 Transverse phase distributions of the helical (left), vertically symmetric sinusoidal (cen-
ter) and vertically anti-symmetric sinusoidal (right) LG33 modes. The colour represents the phase,
in a range from 0 (white) to 2π (black)

about this axis can constructively interfere and be fully resonant. While the intensity
profiles of helical LG33 modes display symmetry about the vertical axis, their phase
profiles do not, as shown in the leftmost panel of Fig. 4.24. Certain sinusoidal modes,
on the other hand, do possess the required symmetry (or anti-symmetry) about the
vertical axis, as shown in the middle and right panels of Fig. 4.24. We also expect that
the vertically symmetric mode and the vertically anti-symmetric modes should have
different resonance conditions. This is because the anti-symmetric mode will require
an additional λ/2 of round trip path length compared to the vertically symmetric
mode (equivalent to an additional π phase shift), in order to interfere constructively.
The resonant conditions of the two different sinusoidal modes should therefore be
separated by half of the free spectral range of the cavity.

An interesting outcome of this arises when we consider the helical LG modes as a
sum of sinusoidal modes, employing Euler’s formula eix = cos(x) + i sin(x). If the
helical modes can be described as a sum of sinusoidal modes, then one expects that
when a helical mode is injected into a triangular mode cleaner, the mode cleaner can
be tuned to be on resonance for one of the constituent sinusoidal modes, while being
anti-resonant for the other. As a result of this we expected that a triangular mode
cleaner can be used to decompose a helical LG mode into its sinusoidal components.

Another important difference between linear and triangular mode cleaner cavities is
that the latter feature a spherically curved mirror which is probed by the circulat-
ing beam under an angle (not normal incidence). This results in a breaking of the
symmetry about the azimuthal angle for the mode cleaner eigenmodes. This is not
usually a problem for fundamental mode operation, since an astigmatic LG00 mode
is still an eigenmode of the cavity. Higher-order LG modes on the other hand are
not eigenmodes of astigmatic cavities [19] . The mode shape of even sinusoidal LG
beams degenerates upon transmission through a triangular mode cleaner as a result
of the astigmatism. There are two possible solutions to this problem; to use linear
cavities exclusively, or to design non- astigmatic mode cleaner cavities with four
or more mirrors. Some work has already been done to design non-astigmatic mode
cleaner cavities for fundamental mode operation [20] , which should be investigated
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Fig. 4.25 Overlaid scans of the triangular mode cleaner, with helical and vertically symmetric
sinusoidal LG33 input beams. The helical beam trace shows three large peaks, with a total separation
of one free spectral range. The first of these peaks is also present in the sinusoidal trace, but the
second and third peaks are not. The third peak is absent in the sinusoidal trace due to the temperature
drift of the spacer taking the next free spectral range out of the scanning range, but the second peak
is absent as it corresponds to the vertically anti-symmetric sinusoidal mode

for use with higher-order LG modes. One possibility may be to implement aspher-
ical mirrors to build a non-astigmatic mode cleaner for higher-order LG modes. It
should be noted that using only linear cavities as mode cleaners incurs the additional
complication of using polarising optics to extract the control signals in reflection.

In order to experimentally demonstrate these effects, a triangular mode cleaner was
placed after the linear mode cleaner, as depicted in Fig. 4.26. The length of the
triangular mode cleaner was scanned while using the sinusoidal LG33 beam and
the helical LG33 beam as the input in succession. Figure 4.25 shows the transmitted
light power measured for both scans. The helical input scan shows three separate
large resonances. It follows from the theoretical understanding that these should
correspond, from left to right, to the resonances of the vertically symmetric sinusoidal
mode, the vertically anti-symmetric sinusoidal mode, and then the next free spectral
range of the vertically symmetric mode.4

When the input beam was changed from the helical to the vertically symmetric
sinusoidal LG33 mode, the second peak disappeared from the trace. This is as would
be expected if the second peak in the helical trace indeed corresponds to the vertically
symmetric mode. The third peak was also not visible in the recorded scan, though this

4 The resonances may equally well have corresponded to the anti-symmetric, symmetric, and the next
free spectral range of the anti-symmetric modes, but the sinusoidal input mode trace demonstrates
otherwise.
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Fig. 4.26 The experimental setup for investigating the interaction of a helical LG33 mode with a
triangular mode cleaner. The intensity profiles of the beams at various locations in the setup are
shown, contrast enhanced here to show the main features more clearly. From left to right the images
show: helical LG33 after the SLM, helical LG33 after transmission through the linear mode cleaner,
beam reflected from the triangular cavity and beam transmitted through the triangular cavity

was due to a thermal drift of the mode cleaner spacer taking the second free spectral
range peak out of the scanning range. In the figure, the sinusoidal trace has been
shifted along the time axis to overlap the first large peak with the corresponding one
from the helical case in order to visually compensate for the drift. This can be seen
from the shifting of the ramp signal trace, since the trigger level on the oscilloscope
was constant throughout.

In order to test the assertion that the first and second peaks in the helical trace
corresponded to the vertically symmetric and anti-symmetric modes respectively,
we then feedback controlled the triangular cavity in similar fashion to the linear
mode cleaner. In this case, however, the length error signal was obtained from the
light reflected from the cavity input mirror, following the PDH method.

Intensity profiles of the input, transmitted and reflected beams at one of these reso-
nances are shown in Fig. 4.26. The beam after the linear cavity was of slightly lower
quality than that shown in Fig. 4.20 as less time was spent optimising the alignment
for this experiment. It was observed that the beam transmitted through the triangular
cavity on this resonance strongly resembled the vertically symmetric sinusoidal LG33
mode. The reflected beam is always a superposition of all the modes rejected by the
mode cleaner, and is in general therefore of lower mode purity than the transmitted
mode. However, it can still be seen that the vertically anti-symmetric LG33 mode is
clearly the dominant mode present in the reflected light.

We repeated the measurement for the alternative resonance point, where as expected
we found the dominant types of the transmitted and reflected sinusoidal mode to be re-
versed. This confirmed our prediction that the helical input beam is decomposed into
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the constituent sinusoidal modes upon interaction with the triangular mode cleaner.
We can therefore conclude that in order for helical LG33 modes to be compatible
with gravitational wave interferometers, the mode cleaners used must be linear, or at
least be comprised of an even number of mirrors.

Looking in more detail at the transmitted mode in Fig. 4.26, it can be seen that the
vertical band is brighter than the other bands. We expect that this effect is caused
by the astigmatism inherent in the cavity, due to the non-zero angle of incidence of
the beam on the curved mirror. The effects of astigmatism and other mirror surface
defects on LG modes within cavities are discussed in more detail in Sect. 5.1.

These results show that helical LG modes will be incompatible with the current
triangular mode cleaner designs in place for Advanced LIGO, Advanced Virgo and
GEO600. In addition, the astigmatism effect is likely to make even the sinusoidal LG
modes incompatible with 3 mirror mode cleaners, as discussed further in Sect. 5.1.
The incompatibility with triangular mode cleaners constitutes a significant consid-
eration for the overall optical design of the detectors for which LG mode technology
is considered.
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Chapter 5
Prototype Experiments with the LG33 Mode

Following the largely positive results of the table-top LG mode experiments, we
were afforded a fortuitous opportunity to work in collaboration with members of the
Glasgow interferometry group towards testing the LG mode technology on the 10 m
suspended cavity in Glasgow. Progression from table-top experiments to a prototype
experiment with suspended mirrors is a standard feature of the development of new
technologies for gravitational wave detectors, in order to ensure compatibility with
realistic interferometer subsystems and requirements.

At this point, we had also become increasingly aware of one of the main difficulties
that was expected to be encountered with the LG mode technology; LG mode degen-
eracy and the coupling to degenerate modes caused by mirror surface imperfections.
We believe that we had not encountered this problem up to this point due to our use
of relatively small beam sizes on the cavity mirrors. On small spatial scales, even off
the shelf mirrors such as those used in the linear mode cleaner can be close approx-
imations to ideal spherical surfaces. However, simulations with the LG33 mode in
larger cavities with larger beam sizes on realistic mirror surfaces showed this to be a
potentially fatal drawback to the use of higher-order LG modes in gravitational wave
detectors [1, 2].

The most urgently required experiment with LG modes at this point was therefore an
analysis of the extent of the degeneracy problem in a larger cavity with larger beam
sizes. Performing LG mode experiments at the Glasgow 10 m prototype was thus
another opportunity to achieve two goals with one experiment; we could assess the
compatibility of the LG33 with the prototype interferometer at large, and since the
10 m cavity geometry is such that the beam sizes at the mirrors are roughly a factor
of 5 larger than in our table-top experiment, we hoped to be able to simultaneously
investigate the effects of LG mode degeneracy.

P. Fulda, Precision Interferometry in a New Shape, Springer Theses, 99
DOI: 10.1007/978-3-319-01375-6_5,
© Springer International Publishing Switzerland 2014
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5.1 Degeneracy of Higher-Order Laguerre-Gauss Modes

In this Section I will give a brief explanation of the LG mode degeneracy problem and
its significance for LG mode technology in gravitational wave interferometers. Most
of the theoretical work on this issue that has been done in Birmingham has been per-
formed by Charlotte Bond, so a more thorough explanation of this matter is likely to
appear in her thesis later on. Some key results of Bond’s can also be found in Ref. [1].

An important difference between higher-order LG modes and the fundamental LG00
mode is that only the LG00 mode is unique in its mode order. For each higher-order
mode there exists at least one other mode of the same order. Since the mode filtering
effect of optical cavities relies principally on the round trip Gouy phase difference
between different mode orders, as described in Sect. 4.3, they cannot therefore filter
out all other modes than the LG33 when on resonance for order 9. For this reason we
call the other order 9 modes degenerate with the LG33 mode.

This degeneracy of higher-order modes has serious implications for their appli-
cation in gravitational wave interferometers. In the initial simulations reported in
Chelkowski et al. [3] the interferometer mirrors were modelled as perfect spheri-
cal curved mirrors. In reality however, the mirrors will have some small deviations
from perfect spherical surfaces which can cause coupling from the LG33 mode into
other modes of order 9. If we consider this process occurring within the arm cav-
ities of a gravitational wave interferometer, the degeneracy of the modes of order
9 will mean that they can all be resonant at the same time. The mode content of
the circulating beam may therefore have a significantly reduced proportion of LG33,
the remainder being made up principally of other order 9 modes. If the mode con-
tent of both arm cavities is different, which is likely to be the case if the coupling
between modes is driven by the randomly oriented mirror surface distortions, the
modal overlap at the beam splitter will be imperfect and the output port contrast will be
reduced.

Further complications can arise if the resonance frequencies of order 9 modes in
the arm cavities are not exactly equal, but are separated by frequencies less than
the cavity linewidth. This can occur because the round trip Gouy phase in a cavity
is determined by the average curvature of the mirror surfaces (as well as the mode
order), and the average curvature experienced by different spatial modes even of the
same order may differ slightly for mirror surfaces which are not perfectly spherical.
The average curvature experienced by different spatial modes can differ, since their
different intensity profiles will sense certain portions of a mirror surface to a differing
degree. If we consider two higher-order HG modes of the same order—HG90 and
HG09, it is clear that the round trip Gouy phase of these two modes will be primarily
sensitive to the average curvature along two orthogonal axes of the mirror surface.

http://dx.doi.org/10.1007/978-3-319-01375-6_4
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In the case of an astigmatic mirror therefore, the two modes will have different
round trip Gouy phases and hence different resonance conditions.

For the case of a LG33 mode in an astigmatic cavity, it is instructive to consider a
decomposition of the mode into HG modes, as described by Eq. 2.16. In this case,
as previously considered, the different HG modes that constitute the LG33 mode
will experience different round trip Gouy phases. After a round trip, therefore, the
HG modes will no longer have the same phase relations as required by Eq. 2.16.
Performing the reverse decomposition from HG modes to LG modes, one will find
the mode content in the LG base system changed from a pure LG33 mode to a mix
of order 9 modes. In addition to this, the different constituent HG modes will have
different resonance frequencies, as previously described for HG90 and HG09, lead-
ing to the splitting of even a pure LG33 mode into several ‘pseudo-degenerate’ mode
peaks. This effect was experimentally demonstrated in a 10 m suspended cavity, as
described in Sect. 5.4. The frequency splitting effect between HG10 and HG01 modes
has previously been used to estimate the astigmatism of a 40 m cavity at the Caltech
prototype gravitational wave detector facility in Ref. [4].

In the case where several modes of the same order have resonant frequencies in a
cavity which are separated by less than the cavity linewidth, the error signal will
have multiple nearby zero crossings. This can make the arm cavities difficult to con-
trol, since the linear range of the error signal will be reduced, and mode ‘hopping’
between these pseudo-degenerate modes may occur.

The method and results of a detailed numerical and analytical investigation into the
effect of mirror surface distortions on the purity of LG modes within optical cavities
were presented by Bond at the 2011 Amaldi meeting, and in Bond et al. [1], and
another study on this topic is presented in Hong et al. [2]. One of the most important
outcomes from the work described in Bond et al. [1] was the derivation of an analyti-
cal formula for predicting the amount of coupling between different LG modes upon
reflection from a mirror, based on the spatial features of mirror surfaces as described
by Zernike polynomial functions. In the limit that the height of the surface distor-
tions is much smaller than the wavelength of the light, coupling between an incident
mode LGpl and a reflected mode LGp′l ′ is only significantly caused by Zernike poly-
nomials Zm

n which satisfy the condition m = |l − l ′|. Based on this result, it was
possible to propose limits on the heights of the most important low order Zernike
polynomial present on mirror surfaces, in order to achieve a circulating mode purity
of over 99.9 % in aLIGO-like arm cavities [1].

Experiments at the Glasgow prototype give us a way to investigate the LG mode
degeneracy problem heretofore only looked at theoretically and numerically. Though
we did not observe the detrimental effects of the mode degeneracy problem in our
table-top experiment we believe this is most likely due to the relatively small beam
sizes used on the mirrors, and the low cavity finesse in comparison to the advanced
detector arm cavities. However, it is clear that LG modes must also work with larger

http://dx.doi.org/10.1007/978-3-319-01375-6_2
http://dx.doi.org/10.1007/978-3-319-01375-6_2
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beam sizes in order to provide the thermal noise benefits that make them attractive in
the first place. LG modes must also be compatible with cavities of similar finesse to
the advanced detector arm cavities. We have therefore carried out experiments with
the LG33 mode at the Glasgow 10 m prototype facility which uses larger beam sizes
in a higher finesse cavity.

5.2 Design and Manufacture of an Etched Diffractive Optic
for Mode Conversion

For the 10 m prototype experiment we used a diffractive optic element (DOE) to facil-
itate the conversion from LG00 to LG33, rather than the SLM used in the table-top
experiments. While the SLM was very useful for prototyping purposes to investigate
the effects of different phase profiles, a fixed transmissive optic allows for the gen-
eration of a higher mode purity at a higher laser power, with greater efficiency and
stability than the SLM. The design of the phase profile for the DOE was very similar
to those used with the SLM to generate LG33 modes. We opted for a non-amplitude
contoured phase profile, to maximise the amount of light power that would remain
in the desired diffraction order. Some of the main design specifications of the DOE
are shown in Table 5.1.

Several factors were considered when choosing the angle into which the desired
beam is diffracted, known as the ‘off axis angle’. First of all, a non-zero off axis
angle is required in order to separate the desired mode from the unmodulated light.
In the SLM setup, the unmodulated light was mainly considered to be a result of direct
reflection from the front surface of the SLM. However, in the transmissive configura-
tion used for the DOE, the dominant source of unmodulated light is from fabrication
tolerances in the etching depth [7]. The off axis angle must be large enough so that
the beams in 0th and 1st orders do not overlap after a practical propagation distance.
In practice this means that the off axis angle should be larger than the sum of the

Table 5.1 Design specifications for the DOE used on the LG mode conversion bench at the Glasgow
10 m prototype

Element area 30 × 30 mm2

Structured area 21 × 21 mm2

Thickness 3.05 mm
Pixel aspect ratio 3000 × 3000
Pixel depth quantisation 2π over 8 levels
Pixel size 7μm
Off axis angle 2.51 mrad
Input beam size 3.5 mm
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Table 5.2 Table showing the power present in LG modes of order 9 in the simulation of DOE LG33
conversion, for three different off axis designs

Mode indices Power content (%)
p l 2.51 mrad 3.76 mrad 5.0 mrad

3 3 87.2 86.9 85.1
4 1 1.06 × 10−5 1.20 × 10−4 3.40 × 10−3

2 5 1.05 × 10−5 9.90 × 10−5 3.16 × 10−3

1 7 4.80 × 10−6 1.05 × 10−6 2.65 × 10−5

0 9 4.38 × 10−6 2.62 × 10−7 2.54 × 10−5

0 −9 4.36 × 10−6 1.39 × 10−6 3.72 × 10−5

2 −5 3.60 × 10−6 9.56 × 10−7 5.14 × 10−6

1 −7 3.42 × 10−6 2.66 × 10−7 1.10 × 10−5

4 −1 2.43 × 10−6 1.77 × 10−7 5.76 × 10−6

The 2.51 mrad off axis angle design performs the best, with the most power in the LG33 mode and
the least power in other modes of order 9

divergence angles of the 0th and 1st order beams, each given by � = arctan
(

λ
πw0

)

.

For the case of a 3.5 mm LG00 beam interacting with the DOE at the waist position,
this gives a minimum off axis angle of 1.22 mrad.

The off axis angle should not be made arbitrarily large, however, as limitations in
the pixel resolution become a larger source of error for larger off axis angles. This
is because for larger off axis angles the grating rulings are closer together, and thus
the quantisation error per ruling is greater in both the transverse and depth axes.
We verified this by analysing the results of FFT simulations performed at Jenoptik
for three different off axis angle designs. We used the same analysis method as
described in Sect. 3.2.3 to decompose the field within the desired diffraction order
into the constituent LG modes. The power content in each of the order 9 modes
is shown in Table 5.2 for each of three different off axis angles. The greatest LG33
mode content was found to be generated by the 2.51 mrad off axis angle design,
and the least was found to be generated by the 5 mrad design. In addition to this
the 2.51 mrad design also generated the least power in other order 9 modes, about
which we were particularly concerned due to their degeneracy with the LG33 mode
in optical cavities. For this reason we chose to use the 2.51 mrad off axis design.

5.3 LG33 Conversion Bench at the Glasgow 10 m Prototype

The setup for the LG33 mode conversion bench is shown in Figs. 5.1 and 5.2. The
beam is picked off from the previously used laser path (shown in purple) after a fibre
output coupler, and directed with a flip mirror into the LG mode conversion area. The
red path shows the LG33 mode conversion path, in which the beam passes through
an EOM for generating the control sidebands, and the DOE. The resulting beam is

http://dx.doi.org/10.1007/978-3-319-01375-6_3
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Fig. 5.1 Schematic of the laser mode conversion path on the Glasgow 10 m prototype input optics
bench. The red line shows the LG33 mode path, and the green line shows the LG00 path that bypasses
the phaseplate. The purple line shows the original LG00 laser path

then transmitted through a linear mode cleaner, which is feedback controlled using
the PDH method to remain on resonance for mode order 9. This serves to increase
the mode purity of the beam, in a similar method to that described in Sect. 4.3. The
transmitted beam is then passed back into the previously used laser path using another
flip mirror, and on towards the suspended cavity. The green path is a DOE bypass
path, which enables us to alternatively operate the linear mode cleaner with the LG00
mode. The idea of this path was to ensure a fair comparison between the performance
of the LG00 and LG33 modes in the suspended cavity.

Since the light transmitted by the mode cleaner must be defined by the cavity eigen-
modes, the transmitted LG00 and LG33 beams should have the same alignment and
mode matching relative to the suspended cavity. The hope was that this would enable
us to make a valid assessment of the relative performance of the two modes within
the suspended cavity. It transpired later, however, that the beam parameters of the
LG33 mode and the LG00 mode after transmission through the linear mode cleaner
were not exactly the same. This was determined by making a series of measurements
of the beam size at different positions after the mode cleaner for both modes, and
fitting the Gaussian beam divergence function to the measurements to extract the
beam waist size and position. Figure 5.3 shows the fit results for the LG33 mode.

http://dx.doi.org/10.1007/978-3-319-01375-6_4


5.3 LG33 Conversion Bench at the Glasgow 10 m Prototype 105

Fig. 5.2 The laser mode conversion path on the Glasgow 10 m prototype input optics bench. The
red line shows the LG33 mode path, and the green line shows the LG00 path that bypasses the
phaseplate. The purple line shows the original LG00 laser path

After passing through the linear mode cleaner, the beam is directed back into the
original LG00 laser path. Before passing into the vacuum system, the beam is passed
through numerous optical components on the laser bench. First of all, the beam is
transmitted through an EOM, which is used to imprint 15 MHz sidebands on the
light. The beam subsequently passes through a Faraday isolator, in place to minimise
the amount of light reflected back to the laser. The original laser path on the bench
was designed to accomodate the LG00 beam, which has a less extended intensity
profile than the LG33 beam. As a result of this, in many places the LG33 beam was
close to the point of clipping at the edges of some of the apertures through which it
was required to pass. This additional design constraint should be taken into account
in any future applications of higher-order LG mode technology; apertures which are
sufficient for the LG00 mode may not be sufficient for the LG33 mode. In addition
to this, we found the LG33 beam to be more sensitive to the imperfections in the
transmissive optics along the laser bench path.

After passing through all the transmissive optics, the intensity profile of the LG33
mode had significantly deteriorated, as shown in Fig. 5.4. This had a significant
impact on the experiment, because it introduced another uncontrollable variable; we
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Fig. 5.3 Data points and fit for the beam waist size and position of the LG33 after the linear mode
cleaner. Plot courtesy of B. Sorazu

could no longer be sure that phenomena observed in the 10 m cavity with the rough
LG33 beam were a consequence of the fundamental interaction of the LG33 mode
with the cavity rather than a consequence of the distortions already present in the
beam.

5.4 10 m Cavity Performance with the LG33 Mode

One of the main aims of this work was to investigate the LG mode degeneracy effect
in the 10 m suspended cavity. Table 5.3 shows some of the relevant parameters for
the 10 m cavity. After the EOM and the Faraday isolator, the beam is passed through
a mode matching telescope in order to match the beam to the cavity eigenmode.
As illustrated in Fig. 3.7, the task of accurately mode matching the LG33 mode to a
cavity is more delicate than for the LG00 mode. Such was the difficulty of this task
for the LG33 mode that we found the dominant mode order present when the LG33
beam was injected into the cavity to be not order 9, but rather orders 7 or 11. The
dominant mode orders were determined by taking high speed video footage of the
beam transmitted through the cavity as the cavity was scanned. It was through these
measurements that we also found that the mode shapes at the resonant tunings in the
cavity resembled HG modes much more closely than LG modes.

http://dx.doi.org/10.1007/978-3-319-01375-6_3
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Fig. 5.4 Images of the LG33 beam along the path before entering the 10 m cavity. Clockwise from
top left: The beam directly after the linear mode cleaner; the beam after the Faraday Isolator; the
beam after the first mode matching lens; the beam just before the 10 m cavity input mirror (after a
lens to focus the beam to within the CCD active area). A degradation of the beam purity is observed
along the path to the 10 m cavity

Since the purity of the LG33 beam injected into the cavity had been degraded by the
transmissive components, and the mode matching into the cavity was also apparently
not good enough to achieve a dominant order 9 resonance in the cavity, it is difficult
to draw strong conclusions about the performance of the LG33 mode in the 10 m
cavity. Nevertheless, we observed scans of the cavity with the rough LG33 beam as
the input beam. Figure 5.5 shows the transmitted light power through the cavity as the
cavity is scanned, for both the LG00 and LG33 modes. Since both modes were trans-
mitted through the same linear mode cleaner cavity, they should have the same beam
parameters at the point of entry into the cavity. However, comparing the transmitted
light power traces for LG00 and LG33 modes over the scans shown in Fig. 5.5, we
see that significantly more power is present in mode orders other than the dominant
order for the LG33 case. This is to be expected, since the LG33 is expected to be
more sensitive to mode mismatch than the LG00, as shown in Fig. 3.7. It should be
noted, however, that the degradation of the beam profile due to the effects of passing

http://dx.doi.org/10.1007/978-3-319-01375-6_3
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Table 5.3 Relevant parameters of the 10 m suspended cavity in Glasgow

Cavity length 9.812 ± 0.001 m
Free spectral range 15.277 MHz±1.6 kHz
Input test mass power transmission 1.3 %
End test mass power transmission 6 ppm nominal
Input test mass radius of curvature ∞ nominal
End test mass radius of curvature 15 m nominal
Cavity beam waist size 1.55 mm
Transverse mode spacing 4.58 MHz
Modulation sideband frequency 15 MHz
Cavity Finesse 600 Nominal

through the EOM and Faraday isolator may also contribute to the increased presence
of modes in orders other than the injected mode for the LG33 case. It is also the case
that the beam parameters were not exactly the same for the LG33 and LG00 modes
transmitted through the linear mode cleaner.

Figure 5.6 shows close-ups of the dominant mode order peak, for both the LG00 case
and the LG33 case. The dominant peak when the cavity was injected with the LG00
mode, shown in the upper part of Fig. 5.6, follows the expected Lorentzian shape,
and definitely consists of just one peak. On the other hand, the dominant peak when
the cavity was injected with the LG33 mode has a much more exotic structure, as
shown in the lower part of Fig. 5.6. Figure 5.7 shows 4 of the dominant peaks from
a scan of the cavity with the LG33 mode as the input beam. Each of these peaks is
separated in the scan by one FSR, and yet we see that the main features are common
to each peak. The repetition of this structure across many free spectral ranges of the
cavity demonstrates that the structure is not merely a measurement artefact, but is
in fact a genuine feature of the cavity response when pumped with the LG33 mode.
The multiple, or ‘split’, peak is a feature common to cavities with imperfect mirror
surfaces operated with higher-order modes. Similar peak structures were observed in
simulations of the LG33 mode in cavities which included astigmatism of the mirror
surfaces, as described in Sect. 5.1.

We made high speed recordings of the beam transmitted through the cavity in order
to observe the beam shape across the dominant split resonance. We found that each
visible mode shape across the scan appeared to have more in common with HG
modes than LG modes; little or no circular symmetry was observed, but rectangular
symmetries in the intensity patterns were apparent. Figure 5.8 shows some of the
observed mode shapes as the cavity was swept over the split resonance. The arrows
in Fig. 5.8 indicate the rough position on the scan to which the different mode images
correspond. The rectangular symmetry in each of the three brightest modes is clear.
There is also a clear change in the orientation of the modes across the peak; the bright
mode on the left side is more spatially extended along the horizontal axis, similar to
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Fig. 5.5 Scans of the 10 m cavity with the LG00 mode (top) and the LG33 mode (bottom), each
over roughly 3 free spectral ranges. The cavity was scanned by actuating on the temperature of the
laser crystal, thus detuning the frequency of the light passed into the cavity. The top scan shows
three visible peaks per free spectral range; the dominant one corresponds the LG00 mode. The lower
scan shows considerably more visible peaks, and less contrast between the dominant peak and the
other peaks than for the LG00 input case

a HG70 mode, whereas the bright mode on the right side is more spatially extended
along the vertical axis, similar to a HG07 mode. This behaviour is exactly what would
be expected for a LG mode in an astigmatic cavity, as decribed in Sect. 5.1; an astig-
matic cavity does not have the required circular symmetry to support higher-order
LG eigenmodes.
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Fig. 5.6 A closer look at the dominant peaks in the cavity scans shown in Fig. 5.5. The upper
plot shows the LG00 peak, which follows the theoretically expected Lorentzian function, and is
comprised of just a single visible peak. The lower plot shows the dominant peak when the cavity
was scanned with the LG33 mode. Due to difficulties with accurately mode matching the LG33
input, it is believed that the dominant peak is not the order 9 peak

In order to test whether the cavity truly was astigmatic or not, we decided to make
independent measurements of the cavity mirror surfaces. The input test mass surface
figure was measured using a Wyko optical profiler. This measurement method was
suitable for the input mirror due its small size (1′′ diameter) and near flat curvature.
The results from the Wyko optical profiler measurement gave the radius of curvature
along the horizontal axis as 7,077 m, and the radius of curvature along the vertical
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Fig. 5.7 The dominant peaks of four successive FSRs of the 10 m cavity when scanned with the
LG33 mode as the input beam. The main features of the split peak are common to each FSR,
indicating that the structure is a genuine feature of the cavity response

Fig. 5.8 Mode shapes in the beam transmitted through the cavity, recorded with the high-speed
camera and overlaid on the split LG mode resonance peak. The red dots on the cavity scan x-axis
indicate the frame rate of the camera. Image courtesy of B. Sorazu

axis as −1, 997 m. The same method was not suitable for the end test mass, however,
due to its much larger size and stronger curvature. Instead, the astigmatism of the end
mirror was estimated using the Ronchi method, originally developed for measuring
the astigmatism of telescope mirrors [5]. The Ronchi test gave the result that the
difference between the end mirror radii of curvature in the vertical and horizontal
planes was 5.3±0.5 cm.
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Fig. 5.9 Astigmatic cavity simulations with four different cavity unput modes. The astigmatism
used in the simulation was informed by measurements of both cavity mirrors. A small misalignment
of 20μrad was applied to the end mirror in order to recreate the measured asymmetry of the dominant
peak in the cavity scan. Clockwise from top left: LG33, LG23, LG43 LG31. The LG33 and LG23
peaks best approximate the measured data shown in Figs. 5.7 and 5.6

We performed FINESSE [6] simulations of the 10 m cavity with these estimates
of the astigmatism, to check for similarities with the measured scans. Due to the
mode mismatching problem, and our observation that order 7 modes appeared to
be dominant in the cavity, we ran the simulation with a range of different input LG
modes to see if they matched the data better than the LG33 mode. Figure 5.9 shows
the results of four such simulations, with each of the LG33, LG23, LG43 and LG31
modes injected into the cavity. Only the LG23 result, and to a lesser extent the LG33
result, reproduce the main features of the measured peak scan shown in Figs. 5.6
and 5.7.

The analysis of the performance of the LG33 mode in the 10 m cavity is still a
work in progress at the current time, but we expect to be able to conclude the work
within the next few months. At this stage however, I do not believe any strong
conclusions can be drawn from this experiment which either verify or disprove the
results of the simulation studies into the effects of LG mode degeneracy in cavities
with larger beam sizes than those used in our table-top experiments. Unfortunately
the degradation of the input mode and the poor mode matching of the cavity have
so far made it very difficult to get a precise agreement between observations and
the simulations, and there are many degrees of freedom in the experiment which
make it hard to pinpoint the effects due to the use of the LG33 mode itself. What we
can conclude so far, however, is that the LG33 mode was not resonating in the 10 m
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cavity with any appreciable mode purity. In the future however, with mirror surface
figures improved in line with the requirements stated in Bond et al. [1], and a more
dedicated input laser path with extra clearances allowing for the larger spatial extent
of the LG33 mode, the picture might look more positive.
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Chapter 6
Summary and Conclusions

6.1 Summary

In this thesis I have described the course of my investigations into the use of higher-
order LG modes for precision interferometry. The motivation for using higher-order
LG modes in place of the currently used LG00 mode comes from their improved test
mass thermal noise performance, as described in Sects. 2.6 and 2.7.

Throughout the course of my PhD studies I have helped to progress higher-order LG
mode technology in the context of gravitational wave interferometry from the initial
motivation, to a solid foundation based on demonstrated compatibility with some of
the key interferometric techniques of the field.

In the initial simulation study into the interferometric performance of the LG33
mode reported in Sect. 3.1, it was shown that the LG33 mode is compatible with the
PDH longitudinal control scheme and the Ward technique for alignment control. For
the Advanced Virgo-like case considered, it was also shown that the LG33 mode
performed better in terms of all investigated noise couplings than the LG00 mode
with the equivalent clipping loss at the cavity mirrors, as published in [1].

In the table-top experiments with the LG33 mode, I demonstrated the generation of
multiple different LGpl modes of both the helical and sinusoidal form. I have also
demonstrated for the first time the locking of an optical cavity to a higher-order LG33
mode using RF modulation/demodulation techniques, as well as demonstrating the
increase in mode purity of a LG33 beam upon transmission through a linear mode
cleaner cavity to over 99 %. I also demonstrated experimentally for the first time
the decomposition of a helical LG33 mode into its constituent sinusoidal modes by
means of interaction with a three-mirror optical cavity. These results were published
in [2].

My most recent contributions to LG mode research have been as part of a collabora-
tion between the Birmingham and Glasgow interferometry groups to test LG mode
technology on a suspended 10 m cavity. I designed and installed the LG33 mode con-
version path on the JIF laser injection bench, and assisted throughout the ongoing
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investigations into the performance of the LG33 mode in the 10 m cavity. The results
of these investigations have raised some interesting issues that should be considered
in the future when designing larger scale implementations of LG mode technology,
and were published in [3].

6.2 Conclusions and Outlook

The conclusions in terms of the compatibility of LG modes with gravitational wave
interferometers are largely positive; one of the most crucial control schemes in the
field, the PDH method, has been proven to work with the LG33 mode in both nu-
merical investigations and table-top experiments. The Ward technique for alignment
sensing has been shown to work with the LG33 mode in numerical investigations,
though it remains for this to demonstrated experimentally. We have demonstrated a
method for producing extremely pure LG33 modes by using a linear mode cleaner
cavity to filter out the light in unwanted modes left over from the conversion process.
Although I did not report on the work within the main body of the thesis, I have
been involved in work towards developing a high-power LG33 laser source in col-
laboration with colleagues from Birmingham and members of the AEI in Hannover,
where over 50 W of light has been produced in the LG33 mode with high purity
[4]. This progress suggests that a potential high-power LG33 mode light source for
gravitational wave detectors is not too distant a prospect.

On the negative side, the helical LG33 mode has been shown to be incompatible with
the triangular mode cleaner design commonly used in gravitational wave interferom-
eters. We have also seen that the LG33 mode is very sensitive to any astigmatic effects.
In particular, the degeneracy of higher-order LG modes and the inter-coupling be-
tween degenerate modes caused by mirror surface distortions is the biggest problem
to be overcome before the technology looks like a truly viable option for inclusion
in future detector designs. Having said that, Bond has calculated the mirror require-
ments that would be necessary to achieve an acceptable circulating mode purity
within the arm cavities of gravitational wave detectors, and so to some extent for
the time being the fate of higher-order LG mode technology for gravitational wave
interferometers lies in the hands of mirror manufacturers.

In this thesis I have focused on the impact and performance of higher-order LG
modes within the field of gravitational wave interferometry, but the thermal noise
improvements they offer may also be useful in other areas where thermal noise
of optical readouts is a limiting factor, such as for example in the development of
ultra-stable optical clocks. In different fields, the degeneracy of LG modes may be
less of a problem. For example if the beam sizes are by necessity small, a thermal
noise advantage could still be provided over the LG00 mode by exchanging it for a
higher-order LG mode.

Very recently an active mirror surface distortion compensation method has been pro-
posed which may be able to reduce the specific distortions that cause coupling from
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the LG33 mode to other order 9 modes [5]. The numerical results presented in [5]
showed that this actuation method could improve the circulating LG33 mode purity
from 79.0 % to 99.9 % for an Advanced-Virgo like cavity. This is an extremely posi-
tive result for LG33 mode technology, as it may significantly relax the requirements
on initial mirror polishing for compatibility with the LG33 mode.

For future work on LG mode technology, there are still many interferometric perfor-
mance tests to be done. A demonstration of automatic alignment of a cavity using the
Ward technique with the LG33 mode would be an interesting experiment, as would
be the operation of a coupled cavity system such as a power recycled Michelson or a
Fabry-Perot Michelson with the LG33 mode. There are plenty of interesting advances
to be made on the table-top with LG modes before the mirror manufacturers catch
up to the requirements for full scale detectors.
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Appendix A
Thermal Noise Scaling Factors
for Higher-Order Modes

A.1 Laguerre-Gauss Mode Thermal Noise Scaling Factors

Coating Brownian Noise

The coating Brownian noise improvement factors for higher-order LG modes over
the LG00 for a 1 ppm clipping loss are shown in Table 2.3. The reduction factors for
coating Brownian thermal noise were given precedence in the main part of this thesis
because, as shown in Fig. 2.1, this noise is expected to be the largest of the test-mass
thermal noises in Advanced LIGO.

Substrate Brownian Noise

The substrate Brownian noise power spectral density scales with the beam spot size
as 1/w, and is proportional to the numerical values g0pl which describe the effects of
the different mode shape [1]. Table 15 of [1] shows the g0pl values for modes up to
LG55.1

From the beam size scaling factors required to give equal clipping losses in Table 2.2,
and the substrate Brownian noise power spectral density scaling factors g0pl, we
calculate the substrate Brownian noise power spectral density improvement of LGpl

modes over the LG00 mode, �SubBrown
pl , as

�SubBrown
pl = apl

g0pl
. (A.1)

The results of for �SubBrown
pl are summarised in Table A.1. From this table it is clear

that higher-order LG modes have a substrate Brownian noise power spectral density
advantage over the LG00 mode.

1 In [1], the mode indices of higher-order LG modes are notated as n and m, as opposed to the
notation of p and l used in this work. The p and l notation is preserved here to provide distinction
from the HG mode set.
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Table A.1 Numerical values of the scaling factors between the substrate Brownian noise power
spectral density for LG00 and LGpl modes, where all modes are scaled to give 1 ppm clipping loss
on a fixed mirror size

p 0 1 2 3 4 5
l

0 1.0000 1.3927 1.6102 1.7318 1.8417 1.8944
1 1.3183 1.5704 1.7231 1.8051 1.8940 1.9687
2 1.4906 1.6968 1.8339 1.9034 1.9619 1.9872
3 1.6088 1.7878 1.8706 1.9656 1.9760 2.0152
4 1.6690 1.8618 1.9222 1.9756 2.0714 2.0561
5 1.7143 1.9028 1.9877 2.0632 2.1045 2.1159

Substrate Thermoelastic Noise

The substrate thermoelastic noise power spectral density scales with the beam spot
size as 1/w3, and is proportional to the numerical values g2pl which describe the
effects of the different mode shape. Table 18 of [1] shows the g2pl values for modes
up to LG55. From the beam size scaling factors required to give equal clipping losses
in Table 2.2, and the thermoelastic noise power spectral density scaling factors g2pl,
we calculate the substrate thermoelastic noise power spectral density improvement
of LGpl modes over the LG00 mode, �SubTherm

pl , as

�SubTherm
pl = a3

pl

g2pl
. (A.2)

The results of for �SubTherm
nm are summarised in Table A.2. From this table it is clear

that some higher-order LG modes, including the LG33 mode have a small substrate
thermoelastic noise power spectral density disadvantage over the LG00 mode. In
the context of second generation gravitational wave detectors this is not likely to
be a large concern, since the substrate thermoelastic noise is already expected to be
significantly lower than the coating Brownian noise.

Coating Thermoelastic Noise

According to [2–4], the coating thermoelastic noise power spectral density scales
in the exact same manner as the coating Brownian noise, and thus the coating ther-
moelastic noise power spectral density improvement factors for higher-order LG
modes are exactly the same as those shown in Table 2.3.

http://dx.doi.org/10.1007/978-3-319-01375-6_2
http://dx.doi.org/10.1007/978-3-319-01375-6_2
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Table A.2 Numerical values of the scaling factors between the substrate thermoelastic noise power
spectral density for LG00 and LGpl modes, where all modes are scaled to give 1 ppm clipping loss
on a fixed mirror size

m 0 1 2 3 4 5
n

0 1.0000 0.7780 0.6350 0.5405 0.4632 0.4133
1 1.7107 1.2412 0.9794 0.8316 0.7182 0.6203
2 1.8588 1.3424 1.0773 0.9178 0.7842 0.6891
3 1.8590 1.4065 1.1225 0.9426 0.8182 0.7322
4 1.8856 1.4212 1.1601 0.9914 0.8330 0.7639
5 1.8209 1.4066 1.1697 0.9640 0.8622 0.7791

A.2 Hermite-Gauss Mode Thermal Noise Scaling Factors

Coating Brownian Noise

The coating Brownian noise improvement factors for higher-order HG modes over
the HG00 for a 1 ppm clipping loss are shown in Table 2.5.

Substrate Brownian Noise

The substrate Brownian noise power spectral density scales with the beam spot size
as 1/w, and is proportional to the numerical values g0nm which describe the effects
of the different mode shape. Table I of [2] shows the g0nm values for modes up to
HG55. In the same way as for the LG modes, we calculate the substrate Brownian
noise power spectral density improvement of HGnm modes over the HG00 mode,
�SubBrown

nm , as

�SubBrown
nm = anm

g0nm
. (A.3)

The results of for �SubBrown
nm are summarised in Table A.3. From this table we can see

that higher-order HG modes have a substrate Brownian noise power spectral density
advantage over the HG00 mode.

Substrate thermoelastic Noise

The substrate thermoelastic noise power spectral density scales with the beam spot
size as 1/w3, and is proportional to the numerical values g2nm which describe the
effects of the different mode shape. Table III of [2] shows the g2nm values for modes
up to HG55. We calculate the substrate thermoelastic noise power spectral density
improvement of HGnm modes over the HG00 mode, �SubTherm

nm , as

�SubTherm
nm = a3

nm

g2nm
. (A.4)

http://dx.doi.org/10.1007/978-3-319-01375-6_2
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Table A.3 Numerical values of the scaling factors between the substrate Brownian noise power
spectral density for HG00 and HGnm modes, where all modes are scaled to give 1 ppm clipping loss
on a fixed mirror size

m 0 1 2 3 4 5
n

0 1 1.165 1.232 1.268 1.288 1.300
1 1.165 1.364 1.450 1.496 1.524 1.539
2 1.232 1.450 1.550 1.605 1.638 1.656
3 1.268 1.496 1.605 1.667 1.706 1.729
4 1.288 1.524 1.638 1.706 1.749 1.779
5 1.300 1.539 1.656 1.729 1.779 1.808

Table A.4 Numerical values of the scaling factors between the substrate thermoelastic noise power
spectral density for HG00 and HGnm modes, where all modes are scaled to give 1 ppm clipping loss
on a fixed mirror size

m 0 1 2 3 4 5
n

0 1 0.831 0.688 0.583 0.503 0.441
1 0.831 0.776 0.685 0.602 0.535 0.478
2 0.688 0.685 0.629 0.570 0.517 0.470
3 0.583 0.602 0.570 0.528 0.487 0.449
4 0.503 0.535 0.517 0.487 0.454 0.425
5 0.441 0.478 0.470 0.449 0.425 0.399

The results of for �SubTherm
nm are summarised in Table A.4. From this table it is clear

that higher-order HG modes actually have a significant substrate thermoelastic noise
power spectral density disadvantage over the HG00 mode.

Coating Thermoelastic Noise Scaling Factors

As was the case for LG modes, the coating thermoelastic noise power spectral den-
sity scales in the exact same manner as the coating Brownian noise. The coating
thermoelastic noise power spectral density scaling factors are therefore exactly the
same as those shown in Table 2.5.

http://dx.doi.org/10.1007/978-3-319-01375-6_2


Appendix B
Simulation Code for Results Presented
in Chapter 5

B.1 FINESSE Input Files for Simulation Study into the
Interferometric Performance of the LG33 Mode

The FINESSE input file below is the master file for the simulations described in
Sect. 3.1. The basic optical layout is first described, including the input mode, phase
modulations, mirror and cavity parameters and photodetectors. Next the numbered
blocks of code can be used to plot the various aspects of the system that were
investigated. By uncommenting each block in turn the plots shown in Sect. 3.1 may
be reproduced. Blocks are commented out using the syntax /* to begin the block
comment, and */ to end the comment. Individual lines are commented out using
the # key or %. See the FINESSE web page to download the FINESSE executable,
source code, reference manual and examples.

# Input laser with power 1W at node n1
laser i1 1 0 n1

# Set FINESSE to use higher order modes up to
order 13 maxtem 13

# Create LG33 mode using decomposition into
Hermite-Gauss modes.

# See matlab script temsLG.m for the decompositions
for other LG modes

tem i1 0 0 0 0
tem i1 9 0 0.164062 0
tem i1 8 1 0.164062 -90
tem i1 7 2 0 180
tem i1 6 3 0.125 -90
tem i1 5 4 0.046875 180
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tem i1 4 5 0.046875 -90
tem i1 3 6 0.125 180
tem i1 2 7 0 0
tem i1 1 8 0.164062 180
tem i1 0 9 0.164062 90

# Add modulation sidebands
mod EOM1 $fEOM1 0.3 2 pm 0 n1 n2

# Define space before REFL beamsplitter
s lx1 $lx1 n2 nIMX1

# IMX - cavity input mirror in the X-arm
bs2 IMXAR $RIMXAR $LIMXAR $IMXARphi 0
nIMX1 nPOX1 nIMXi1 nPOX2
s sIMX $sIMX $nsilica nIMXi1 nIMXi2
m1 IMX $TIMX $LIMX $IMXphi nIMXi2 nIMX2
attr IMX Rc $RCIMX

# Intra-cavity space
s Lx $Lx nIMX2 nEMX1

# EMX cavity end mirror in the X-arm
m1 EMX $TEMX $LEMX $EMXphi nEMX1 nEMXi1
s sEMX $sEMX $nsilica nEMXi1 nEMXi2
m EMXAR $REMXAR $TEMXAR $EMXARphi nEMXi2 nXP1
attr EMX Rc $RCEMX

# Set cavity length to 3km
const Lx 3000

# Set length of space before REFL beamsplitter
const lx1 6.044

# optical path to quadrant photodetectors
s sPO2 0 $nsilica nPOX2 nPOX3
m mPO2 0 1 0 nPOX3 nPOX4
s sQr1 0 nPOX4 nQr1
bs bsQr .5 .5 0 0 nQr1 nQr2 nQr3 dump
s sQra 0 nQr2 nQra
s sQrb 0 nQr3 nQrb
attr sQr1 g 0
attr sQra g 90
attr sQrb g 0
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# Substrates
#---------------------------

const nsilica 1.44963
const sIMX 0.2
const sEMX 0.2

# Corresponding beam sizes
# Mirror Beam size [cm]
# IMX 3.52
# MPR 3.55
# BS 3.53
#---------------------------
const RCEMX 1910
const RCIMX -1910

### RC=1910 results in
#0: node nIMX2(7); IMX(0), Lx(6); n = 1(IMX --> nIMX2)
# x, y: w0 = 16.297262 mm w = 35.17543 mm

z = -1.5 km z_R = 784.21936 m
# q = (-1500 + 784.219i) gamma = 20.78151urad
# g_i-factor = -0.570680628272251309
# g = 0.32567637948521148
# one way Guoy phase = 0.963461860338102914
# mode spacing = 15323.36Hz
# Finesse = 1227
# FSR = 49.9kHz
# FWHM = 40.73Hz

# Transmission, Reflections, etc.
#---------------------------
const TIMX 5m
const LIMX 50u

const TEMX 10u
const LEMX 50u

# AR Coatings
const RIMXAR 100u
const LIMXAR 50u
const REMXAR 0
const TEMXAR 1

# Tunings
#---------------------------
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const IMXphi 167.977016839274 # LG55 # pseudo
locked with phase 0
const EMXphi 0

const IMXARphi 0
const EMXARphi 0

# Modulation frequencies
#---------------------------
#const fEOM1 1.5M
const fEOM1 1k

# Demodulation phases
#---------------------------
#const phi_d_EOM1 66.1
# for a modulation frequency of 15M
#const phi_d_EOM1 170.8
# for a modulation frequency of 1.5M
const phi_d_EOM1 182.25
# for 1kHz

# Error signal slope
#---------------------------
const ESS -0.129376831754298956
const FbS 0.129376831754298956

# Arm x
cav armx IMX nIMX2 EMX nEMX1

phase 0

############################################
# 1. Find operating point of the LG33 mode
in the cavity /*
pd cav_power nEMX1
showiterate 10
# pseudo lock for cavity
ad ph_m11 0 nIMXi2*
ad ph_m12 0 nIMX2
noplot ph_m11
noplot ph_m12
set ph1 ph_m11 deg
set ph2 ph_m12 deg
func cphase = $ph2-$ph1-90
noplot cphase
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lock clock $cphase -1m .1m
noplot clock
func fb = $clock
#noplot fb
put EMX phi $clock
xaxis* IMX phi lin 0 90 10
*/

# IMX phi =167.977016839274
# power = 763.900517266
##########################################

############################################
# 2. Plot cavity mode
/*
retrace off
beam ccd nXP1
xaxis ccd x lin -12 12 100
x2axis ccd y lin -12 12 100
#trace 8
*/
##########################################

##########################################
# 3. Plot transmitted power and error signal
in reflection
#/*
#const theta-tilt 0.1u
#attr EMX xbeta $theta-tilt
#attr EMXAR xbeta $theta-tilt
pd power nXP1
pd1 error $fEOM1 $phi_d_EOM1 nIMXi2
xaxis IMX phi lin 157.977 177.977 400
#diff IMX phi
#x2axis EMX xbeta lin 0 1u 10
#put EMXAR xbeta $x1
#*/
# slope -7.691158828
##########################################

##########################################
# 4. Find error signal demodulation phase
/*
pd1 error $fEOM1 $phi_d_EOM1 nIMXi2



128 Appendix B

diff IMX phi
#xaxis error phi lin 0 180 90 # coarse search
xaxis error phi lin 182 183 4 # fine search
*/
# RESULT
# phi_d_EOM1 = 170.8 for 1.5M
# phi_d_EOM1 = 182.25 for 1k
##########################################

############################################
# 5. lock cavity with error signal
/*
pd cav_power nEMX1
pd1 error $fEOM1 $phi_d_EOM1 nIMXi2
showiterate 10
noplot error
set LES error re
lock clock $LES $FbS .1m
noplot clock
func fb = $clock
put EMX phi $clock
xaxis IMX phi lin 167.977 177.977 10
*/
# Time needed 5m20s
##########################################

##########################################
# 6. introducing tilt
/*
const theta-tilt 1u
attr EMX xbeta $theta-tilt
attr EMXAR xbeta $theta-tilt
# look at error signal and transmitted power
pd power nXP1
pd1 error $fEOM1 $phi_d_EOM1 nIMXi2
xaxis IMX phi lin 156 180 2
*/
# RESULT
# longitudinal error signal position changes
##########################################

##########################################
# 7. cavity lock with longitudinal error signal while
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changing the tilt of EMX
/*
pd cav_power nEMX1
pd1 error $fEOM1 $phi_d_EOM1 nIMXi2
showiterate 10
noplot error
set LES error re
lock clock $LES -0.1 .1m
noplot clock
func fb = $clock
put EMX phi $clock
xaxis EMX xbeta lin 0 1u 100
put EMXAR xbeta $x1
#const theta-tilt 0
#attr EMX xbeta $theta-tilt
#attr EMXAR xbeta $theta-tilt
*/
# RESULT
# longitudinal error signal position changes
##########################################

##########################################
# 8. 2D plot tilt over cavity detuning no FB
/*
pd cav_power nEMX1
pd1 error $fEOM1 $phi_d_EOM1 nIMXi2
noplot error
#showiterate 10
#set LES error re
#lock clock $LES -0.1 .1m
#noplot clock
#func fb = $clock
#put EMX phi $clock
xaxis EMX xbeta lin 0 1u 100
put EMXAR xbeta $x1
#x2axis IMX phi lin 167.807016839274 168.507016839274
100 # 167.977016839274 168.5
x2axis IMX phi lin 167.477016839274 168.477016839274
100 # 167.977016839274 168.5
*/
# RESULT
# longitudinal error signal position changes
##########################################

##########################################
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# 9. Plot alignment error signal
/*
# Quadrant diodes
#---------------------------
#
const Qra_pphi1 0
const Qra_qphi1 90
const Qrb_pphi1 0
const Qrb_qphi1 90

pd1 Qrap $fEOM1 $Qra_pphi1 nQra
pdtype Qrap x-split
#pd1 Qraq $fEOM1 $Qra_qphi1 nQra
#pdtype Qraq x-split
#pd1 Qrbp $fEOM1 $Qrb_pphi1 nQrb
#pdtype Qrbp x-split
#pd1 Qrbq $fEOM1 $Qrb_qphi1 nQrb
#pdtype Qrbq x-split

#xaxis EMX xbeta lin -1u 1u 100
#func to = (-1)*$x1
#noplot to
#put IMX xbeta $to

### optimize demodulation phase of rotation
error signal
### optimized phase Qra_pphi1 = 0
diff EMX xbeta
xaxis Qrap phi lin 0 180 100
*/
##########################################

##########################################
/*

yaxis abs

pd trans n5
#xaxis m1 phi lin 0 80 40
xaxis m1 xbeta lin 0 1u 40
*/
##########################################

# Read out time taken to execute simulation
time
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B.2 Matlab Scripts for Simulation Study into LG33 Mode
Generation

This section includes two top level Matlab scripts for performing some of the simula-
tions reported in Sect. 3.2. The first scriptLG33hx_gen_sim_paramfind.mwas
used to produce Fig. 3.13, and the second script optimum_beam_size_ratio_
LG_upto_order9.m was used to produce the values in Table 3.3. Also included
here are the functions used within these scripts, including the function LGfield.m
and its dependencies, for producing helical LGpl mode complex amplitude matrices,
and LGhelixplate.m for producing the helical LGpl mode phaseplate profiles.

%----------------------------------------------------
% LG33hx_gen_sim_paramfind.m
%
% A script to simulate the conversion of a TEM00 beam
% into a LG33 helical beam for 10 different cases. In
% each case, the phaseplate is the same, and the TEM00
% spot size at the phsaeplate is the same. In each case
% the radius of curvature of the TEM00 beam at the
% phaseplate is different. This script calculates the
% theoretical value for beam parameters of the LG33 mode
% that is produced in each case. Using these parameters
% as initial guesses the script then performs a best fit,
% using the convolution between the phaseplate generated
% LG33 mode and an ideal LG33 mode as the figure of merit,
% to find the LG33 beam parameters which best match the
% phaseplate generated beam. The script writes the fitting
% results to a file called ’LG33hx_gen_fit_res.dat’, and
% writes the theoretical values to a file called
% ’LG33hx_gen_ther_res.dat’. One would then compare the
% theoretical values to the fitted values and use the
% overlap as a figure of merit for the suitability
% of the theory.
%
% Requires the use of the following functions;
%
% LGfield.m
% LGhelixplate.m
% HGfield.m
% fit_LG_field.m
% FT_conv_fields.m
% propagate.m
%
% Paul Fulda, 17/08/09 pfulda@star.sr.bham.ac.uk
%
%----------------------------------------------------------

clear all;

http://dx.doi.org/10.1007/978-3-319-01375-6_3
http://dx.doi.org/10.1007/978-3-319-01375-6_3
http://dx.doi.org/10.1007/978-3-319-01375-6_3
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% Define the initial parameters:
% - for the grid representing the phase plate
% - for the initial TEM00 mode

tic
lambda=1064e-9; % Wavelength
%z0=0; % Distance to beam waist
%D=1; % Distance from TEM00 waist position

to the phaseplate
L=0.5; % Propagation distance from the phaseplate to

’camera’ position
p=3; % Define the radial mode number
l=3; % Define the azimuthal mode number
plate_beamsize = 6e-4; % Define the image size
of the phaseplate
TEM00_wpp=0.0023; % Define the TEM00 spotsize
at the phaseplate

% Define the width/height of the simulation space
x_width =14.6e-3;
y_width =x_width;

% Calculate the x and y range
xrange=x_width/2;
yrange=y_width/2;

% Number of points in the grid, equivalent to
number of pixels

xpoints=768;
ypoints=xpoints;

% Pixel sizes in x and y directions
dx=2*xrange/xpoints;
dy=2*yrange/ypoints;

% Vectors to address all x and y values
x=linspace(-xrange+dx/2,xrange-dx/2,xpoints);
y=linspace(-yrange+dy/2,yrange-dy/2,ypoints);

% Generate phaseplate and pixel scale vectors
[plate,x,y]=LGhelixplate(xpoints,ypoints,x_width,y_width,
p,l,plate_beamsize);

ffit=fopen(’LG33hx_gen_fit_res.dat’,’w’);
for j=0:10

% Produce the initial TEM00 mode at the phaseplate
if j˜=5
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% Set radius of curvature of input
TEM00 at phaseplate RCTEM00=j-5;

% Calculate TEM00 waist size
TEM00w0=rcw2w0(RCTEM00,TEM00_wpp,lambda);
% Calculate TEM00 waist position
TEM00z0=rcw2z(RCTEM00,TEM00_wpp,lambda);
% Generate TEM00 mode
TEM00=HGfield(lambda,TEM00w0,TEM00w0,
TEM00z0,TEM00z0,0,0,x,y);

% Interact the TEM00 mode with the phase plate
LG33lab=TEM00.*plate;
% Propagate the LG33lab beam to the camera position
LG33lab=propagate(LG33lab,L,1,lambda,
2*xrange,2*yrange);

% Generate the LG33theory beam that theory
predicts should

% have the same beam parameters as the LG33lab beam

% Calculate waist size of LGtheory beam
w0xtheory=rcw2w0(RCTEM00,plate_beamsize,lambda);
w0ytheory=w0xtheory;
% Calculate distance to waist of LGtheory beam
ztheory=rcw2z(RCTEM00,plate_beamsize,lambda);
paramsin(1)=w0xtheory;
paramsin(2)=ztheory;
paramsin(3)=1.0;
paramsin(4)=0.0;
[paramsout]=fit_LG_field(paramsin,lambda,L,p,l,x,y,
LG33lab);
% Generate LG33 beam at camera position
LG33theory=paramsout(3)*exp(i*paramsout(4))*LGfield
(lambda,...paramsout(1),paramsout(2)+L,p,l,x,y);

% Compute the inner product of LG33lab and
LG33theory modes:

% Inner product of the theoretical and
phaseplate LG33:

conv6=FT_conv_fields(LG33theory,LG33lab);
% Convert to a percentage:
percentage_2=((abs(conv6))ˆ2)*100;

disp(sprintf(’Fit results:’));
disp(sprintf(’ started with w0=%g, z0=%g,
factor=%g, phi=%g’,...
paramsin(1),paramsin(2),paramsin(3),paramsin(4)));
disp(sprintf(’ ended with w0=%g, z0=%g, factor=%g,
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phi=%g’,...paramsout(1),paramsout(2),paramsout(3),
paramsout(4)));
disp(sprintf(’ overlap %g %%’, percentage_2));

fprintf(ffit,’%d, %d, %g, %g, %g, %g, %g\n’,j,
RCTEM00, paramsout(1),...

paramsout(2),paramsout(3),paramsout(4),
percentage_2);

end
end
fclose(ffit);
toc

The script optimum_beam_size_ratio_LG_upto_order9.m, used to
find the optimum beam size ratios for conversion to higher-order LG modes from a
LG00 mode. The results of this script are shown in Table 3.3 for LGpl modes up to
the order 9.

%----------------------------------------------------
% optimum_beam_size_ratio_LG_upto_order9.m
%
% Script to find the mode purity upon conversion from
% LG00 mode to higher-order LG modes using a
% phaseplate, for different beam size ratios at the
% phaseplate. The optimum size ratio is calculated for
% each LGpl mode, up to the maxmimum order specified.
%
% Requires the use of the following functions;
%
% LGfield.m
% LGhelixplate.m
% HGfield.m
% FT_conv_fields.m
% propagate.m
%
%----------------------------------------------------

clear all

lambda=1064e-9; % wavelength
wTEM00=5e-3; % set beam spot size at phase plate
maxorder=9; %total number of different modes to try
% calculate total number of modes to be investigated
from maxorder for order=0:maxorder
totalnummodes=totalnummodes+floor(order/2)+1;
end
nmode=0; % initialise integer to count the

http://dx.doi.org/10.1007/978-3-319-01375-6_3
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successive modes
istep=0.2e-3; % difference between the waist sizes of
successive input beamshapes
jmax=60; % number of different fudge factors
per input beamshape
jstep=0.1; % step size between subsequent fudge
factors fudgevec=zeros(jmax,1); % initialise vector
to store fudge factors
xsize=40e-3; % define xrange of simulation space
ysize=40e-3; % define yrange of simulation space
xelements=600; % number of x elements
yelements=600; % number of y elemnts
x=linspace(-xsize/2,xsize/2,xelements);
% Define vector of x-positions
y=linspace(-ysize/2,ysize/2,yelements);
% Define vector of y-positions
% Define size of phaseplate in pixels and
physical lengths
platesize=[300,300,20e-3,20e-3];
nrun=1; % initialise nrun variable for
progress update
no_of_runs=jmax*totalnummodes;
% set total number of runs
ntime=0; % initialise another variable to 0
nave_time=0; % initialise average time to 0
convresults=zeros(totalnummodes,jmax);
% Create empty array for storing results
powerratio=zeros(totalnummodes,jmax);

for s=1:jmax
%pre-allocate fudge values to avoid
’loop growth’ problem
fudgevec(s,1)=3-jmax*jstep/2+(s-1)*jstep;

end
% create the TEM00 field at the phaseplate
TEM00=HGfield(lambda,wTEM00,wTEM00,0,0,0,0,x,y);
for l=0:maxorder
p=0;
while 2*p+l<=maxorder;

nmode=nmode+1;
for j=1:jmax % loop over ’jmax’ different
fudge factors
nrun = nrun + 1; % set current number of
runs tic; % start timer
fudge=fudgevec(j); % set fudge factor
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for current loop
% calculate size of desired LGlp mode
% (TEM00 spot size divided by fudge factor)
w0LGlp=wTEM00/fudge;
% generate phaseplate array to produce
desired LGlp mode
LGplate=LGhelixplate(platesize(1),
platesize(2),platesize(3),...
platesize(4),p,l,w0LGlp);
% embed phaseplate in a null grid
LGplate=embedplate(LGplate,xelements,
yelements);
LGgen=TEM00.*LGplate; % interact TEM00
field with phaseplate array
% Calculate theoretical Rayleigh range
of generated LG mode
zRLGlp=pi*w0LGlpˆ2/lambda;
% Propagate generated LG mode over 2
Rayleigh lengths
LGgen=propagate(LGgen,2*zRLGlp,1,lambda,
xsize,ysize);
%LGgen=LGgen/abs(max(max(LGgen)));
% Normalise generated LG mode field
% Create theoretical LG mode with waist
position 2 Rayleigh lengths
% further than the phaseplate position
LGideal=LGfield(lambda,w0LGlp,2*zRLGlp,
p,l,x,y);
powerratio(nmode,j)=FT_power_in_field
(LGgen,x,y)/...
FT_power_in_field(LGideal,x,y);
LGgen=LGgen/powerratio(nmode,j);
% Normalise theoretical LG field
% Find convolution between the theoretical and
% phaseplate generated LG fields
convresults(nmode,j)=FT_conv_fields
(LGideal,LGgen);
[maxconvresults(nmode),maxfudgeconv(nmode)]
=max(convresults(nmode,:));
maxfudgeconv(nmode)=fudgevec(maxfudgeconv
(nmode));
[maxpowerratio(nmode),maxfudgepower(nmode)]
=max(powerratio(nmode,:));
maxfudgepower(nmode)=fudgevec(maxfudgepower
(nmode));
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ntime = toc; % readout timer
nave_time = nave_time + ntime;
ave_run_time = nave_time / nrun;
% Calculate average loop time
% Calculate estimated remaining time
estimated_time = (no_of_runs - nrun)
* ave_run_time;
display(sprintf(’Run %g/%g’,nrun,
no_of_runs));
% display step counter
% display remaining time for calculation
display(sprintf(’%2.0fh:%2.0fmin:%2.0fsec
remaining’,...
fix(estimated_time/3600),
fix(mod(estimated_time,
3600)/60),...
fix(mod(mod(estimated_time,3600),60))));

end
p=p+1;
end

end

The function LGfield.m, used to generate an ideal LG mode amplitude distri-
bution:

%----------------------------------------------
% function field=LGfield(lambda,w0,z,p,l,x,y)
% (requires ulp.m)
%
% Matlab/Octave function to fill a 2D grip with

complex field
% amplitudes for a Laguerre-Gauss beam.
%
% lambda (real): wavelength [m]
% w0 (real): beam radius
% z (real): distance to beam waist [m]
% p,l (int): mode indices of LG TEM_p,l mode
% (p is the radial index)
% x,y (real): position vectors defining
the grid size [m]
%
% field (complex): 2D grid of field amplitudes
%
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% Andreas Freise 25.03.2007
%-------------------------------------------------

function [field,signflip]=LGfield
(lambda,w0,z,p,l,x,y)

w=sqrt(w0ˆ2+z*lambda/pi);

xpoints=length(x);
ypoints=length(y);

[X,Y] = meshgrid(x,y);
r = sqrt(X.ˆ2+ Y.ˆ2);
sr = sqrt(2)*r/w;
phi = atan2(Y,X);

for i=1:ypoints
field(i,:)=ulp(lambda,w0,r(i,:),phi(i,:),z,p,l);
signflip(i,:)=sign(LaguerrePol(p,abs(l),
sr(i,:).ˆ2));

end

return

The function ulp.m, required for LGfield.m.

% -------------------------------------------------
% function field = ulp (lambda,w0, r, phi, z, p, l)
% (required LaguerrePoly.m)
%
% Octave/Matlab function to compute the field of a
2D Laguerre-Gauss
% function u_lp(x,y,z).
%
% lambda = wavelength
% w0 (real): beam widths [m]
% r (real): distance to optical axis [m]
% phi (real): position around optical axis [rad]
% z (real): distance to waist [m]
% l (int): order of mode (azimuthal index,
p>=|l|>=0)
% p (int): order of mode (radial index, p>=0)
%
% field (complex): field amplitude at (x,y,z)
%
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% Andreas Freise 25.03.2007
% --------------------------------------------------

function field = ulp (lambda,w0,r,phi,z,p,l)

sl=l;
l=abs(l);

field=0;

% changed 04/11/09: the limit |l|<=p is not a
requirement
%if ((l<0) || (p<l))
% error(’Error: p>=|l|>=0)’);
% return;
%end

k=2*pi/lambda;
zr=pi*w0ˆ2/lambda;
wz=w0*sqrt(1+(z/zr)ˆ2);
sr=sqrt(2)*r/wz;
qz=z+i*zr;
psi=atan(z/zr);

t1=sqrt(2*factorial(p)/(pi*factorial(l+p)))/wz;
t2=exp(i *(2*p+l+1)*psi);
t3=sr.ˆl.*LaguerrePol(p,l,sr.ˆ2);
t4=exp(-i * k*r.ˆ2./(2*qz)+i*sl*phi);

field=t1*t2*t3.*t4;

return

The function LaguerrePol.m, required for ulp.m.

% --------------------------------------------
% function [L] = LaguerrePol (p,l,x)
%
% Matlab/Octave function to compute the
% associated Laguerre Polynomial L_pˆl (x).
%
% p 1 / l+p \
% L_pˆl(x)= Sum --- | | (-x)ˆj
% j=0 j! \ p-j /
%
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% p,l (int)
% x (real)
%
% L (real)
%
% Andreas Freise 25.03.2007
%---------------------------------------------

function [L] = LaguerrePol (p,l,x)

L=0;
for j=0:p

L=L+bincoeff(l+p,p-j)/factorial(j)*(-x).ˆj;
end

return

The function LGhelixplate.m, used to generate a phase profile for conversion
from a LG00 mode to a LGpl mode. The thinking behind the method used is described
in Sect. 3.2.2.

%------------------------------------------------
% function [plate,x,y]=LGhelixplate(nxpix,nypix,
xsize,ysize,p,l,w)

% (requires LaguerrePol.m)
%
% Matlab function to fill a 2D grid with phase
% values between 0 and 2*pi, thus simulating a
% spatial light phase modulator. The grid is designed
% such as to provide an optimised phaseplate pattern
% to convert from a non-astigmatic TEM00 beam into
% any higher order LG beam with the azimuthal phase
% dependence ’exp(il*phi)’ as opposed to
% ’cos(il*phi)’. The function automatically sets
% the phaseplate pattern to be optimised for equal
% beam sizes in x and y-directions. If you wish
% to use square pixels you should be careful that
% the ratios xsize:nxpix and ysize:nypix are equal.
%
% nxpix,nypix (int): Number of pixels along
x and y-axes
% xsize,ysize (float): Physical size of phaseplate
along x and y-axes
% p,l (int): Mode indices of LG_pl mode
to be generated
% w (real): Spot size of the LG_pl mode
to be generated at the
% phaseplate [m]

http://dx.doi.org/10.1007/978-3-319-01375-6_3
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%
% plate (complex): 2D grid of complex numbers
representing the phase
% x,y (real): Vectors containing the x and
y-positions of pixels
%
% Paul Fulda 25/05/09
%---------------------------------------------------

function [plate,x,y]=LGhelixplate(nxpix,nypix,xsize,
ysize,p,l,w)

x=linspace(-xsize/2,xsize/2,nxpix);
% Generate vector of pixel x positions
y=linspace(-ysize/2,ysize/2,nypix);
% Generate vector of pixel y positions

% Generate a blank phaseplate of the required
size, and initialise matrices
% that will hold the scaled radial, and azimuthal
coordinates for the grid
plate=ones(nypix,nxpix);
sr=zeros(nypix,nxpix)/w;
phi=zeros(nypix,nxpix);

for j=1:nypix
% Calculate radial coordinates and scale
to beam size
sr(j,:)=sqrt(2)*sqrt(x.ˆ2+y(j)ˆ2)/w;
% Calculate azimuthal coordinates of each pixel
phi(j,:)=atan2(y(j),x);

end

% Introduce azimuthal phase dependence
for j=1:nypix

plate(j,:)=plate(j,:).*(l*phi(j,:));
plate(j,:)=exp(i*(plate(j,:)));

end

% Introduce radial phase discontinuities
for j=1:nypix

plate(j,:)=plate(j,:).*sign(LaguerrePol
(p,l,sr(j,:).ˆ2));

end

return
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The function fit_LG_field.m, used to fit an ideal LG mode amplitude dis-
tribution to any amplitude distribution.

%---------------------------------------------------
% fit_LG_field.m
%
% A function to fit a theoretical LG mode amplitude

distribution field1 to an
% input amplitude distribution field1.
% Returns the parameters of the best-fit mode.
%
% paramsin - vector containing in this order -

beam waist size, waist position,
% amplitude scaling factor, phase offset
% lambda - wavelength
% L - distance from origin on z-axis to the point at

which the test is made
% p,l - radial and azimuthal indices of the LG mode
% x,y - position vectors defining the grid size
% field1 - input field whose parameters are to

be determined
% paramsout - best fit beam parameters
%----------------------------------------------------

function [paramsout]=fit_LG_field(paramsin,lambda,
L,p,l,x,y,field1)

options=optimset(’Display’,’iter’, ’TolX’, 0.01,
’TolFun’, 0.01, ’MaxIter’, 1000);

paramsout=fminsearch(@mytestf,paramsin,options,
lambda,L,p,l,x,y,field1);

function [diff] = mytestf(params,lambda,L,p,
l,x,y,field1)

field2=params(3)*exp(i*params(4))*LGfield(lambda,
params(1),params(2)+L,p,l,x,y);
diff=1-abs(FT_conv_fields(field1,field2))ˆ2;

The function FT_conv_fields.m, used to find the inner product between two
amplitude distributions.

%
%------------------------------------------------
% function [c]=FT_conv_fields(field1, field2)
%
% A function for Matlab that computes the scalar
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product between two complex 2D data arrays
(similar to a convolution)

%
% field1: 2D data grid of complex numbers
% field2: 2D data grid of complex numbers
%
% c: value computed as c=int(field1*field2)/

(|field1|ˆ2*|field2|ˆ2)
%
%
% Andreas Freise 14.08.2009
%-------------------------------------------------
%

% Description: Computes the scalar product between
two complex 2D data arrays

% Keywords: scalar, dot, product, 2D, conv, fields

function [c]=FT_conv_fields(field1, field2)

c=sum(sum(field1.*conj(field2)));
cn=sum(sum((field1.*conj(field1))));
cn=cn*sum(sum((field2.*conj(field2))));
c=conj(c/sqrt(cn));

The function propagate.m, used to perform the FFT propagation of fields.

%--------------------------------------------------
% function [out] = propagate(psi,dist, nr, lambda,

sizex, sizey)
%
% Octave/Matlab function, propagates the field

’psi’ over a
% distance ’dist’ using an FFT propagation.
%
% psi (complex): array of field amplitudes
% dist (real): length [m]
% nr (real): index of refraction
% lambda (real): wavelength [m]
% sizex, sizey (real): size of grid in x and

y direction [m]
% (e.g. with dx = distance

between two grid
% points, and xpoints

the number of
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% points, xsize=xpoints*dx
%
% This code is based on the Fortran subroutine
PROPAGATE by Roland
% Schilling, which again was based on code by
Jean-Yves Vinet. You
% can read the theory in Jean-Yves’s very good
’VIRGO book of physics’
% (available online at the VIRGO site as a
pdf file).
%
% Andreas Freise 30.12.2006 adf@sr.bham.ac.uk
%-------------------------------------------------

% Some additional notes:
%
% One nedds to take care that the field amplitude
is sufficiently
% small at the borders of the grid. Everything
reaching the
% end of the grid will be reflected back in
(aliasing effects).
%
% The phase change from one grid point to another
must be less
% than Pi in order to have a unique solution for
the wavefront.
% Curved, e.g. spherical, wavefronts show large
phasechanges
% away from the optical axis and thus can
require a large number
% of points.

function [psi] = propagate(psi,dist, nr, lambda,
sizex, sizey)

% phi can be used to apply an additional phase
to the field,
% here set to zero for the time being
phi=0;

[ny,nx]=size(psi);
if(rem(nx,2)|| rem(ny,2))

error(’Grid length must be a multiple of 2’)
return;
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end

% compute reduced distance
distr=dist/nr;

% calculate propagator
hx=pi*lambda*distr/sizexˆ2;
hy=pi*lambda*distr/sizeyˆ2;

for k=1:nx/2+1
ppgx(k)=exp(i*mod(phi/2+hx*(k-1)ˆ2,2*pi));

end
for k=nx/2+2:nx

ppgx(k)=ppgx(nx+2-k);
end
for k=1:ny/2+1

ppgy(k)=exp(i*mod(phi/2+hy*(k-1)ˆ2,2*pi));
end
for k=ny/2+2:ny

ppgy(k)=ppgy(ny+2-k);
end

% do forward fft transformation
psi=fft2(psi);
% apply propagator
for k=1:nx

psi(:,k)=ppgy(:).*ppgx(k).*psi(:,k);
end
% do backwards fft transformation
psi=ifft2(psi);

return;
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Glossary

CCD Charge coupled device
DOE Diffractive optical element
EOM Electro-optic modulator
FDT Fluctuation dissipation theorem
FFT Fast-Fourier transform
FSR Free spectral range
FWHM Full width half maximum
HG Hermite-Gauss
IMC Input mode cleaner
LG Laguerre-Gauss
LMC Linear mode cleaner
PDH Pound-Drever-Hall
PZT Piezoelectric transducer
QPD Quadrant photodetector
RF Radio Frequency
SLM Spatial light modulator
TMC Triangular mode cleaner
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